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Abstract—The accurate lifetime prediction of lithium-ion bat-
teries (LIBs) is essential to the normal and effective operation of
electric devices. However, such estimation faces huge challenges
due to the nonlinear capacity degradation process and uncer-
tain LIBs’ operating conditions. This paper proposes a novel
end-to-end deep learning model, namely a dual-stream vision
transformer with the efficient self-attention mechanism (DS-ViT-
ESA), to predict the current cycle life (CCL) and remaining
useful life (RUL) of the target battery. The local and global
spatio-temporal features are effectively captured via the vision
transformer with the efficient self-attention mechanism based
on small amounts of charging cycles. Meanwhile, by serving
the differences between each cycle as the supplementary model
input, the inner-cycle and cycle-to-cycle aging information could
be extracted and fused by a dual-stream structure to enhance
prediction accuracy. Experiments exhibit that the proposed model
only needs 15 charging cycles (about 1∼3% along the trajectory
to failure) while ensuring the lifetime prediction accuracy (RUL
error: 5.40%, CCL error: 4.64%, early lifetime prediction error:
2.16%). Meanwhile, the model also shows the effective zero-shot
generalization capacity for the charging strategies not appearing
in the training dataset.

Index Terms—Battery lifetime prediction, Small amounts of
charging cycles, Vision transformer, Dual-stream structure, Effi-
cient self-attention mechanism.

NOMENCLATURE

Parameters
Q,K,V Matrices that pack together sets of queries, keys, and

values, respectively
Cpatch Aging cycles included in one patch
dk, dv Dimensionalities of K and V, respectively.
dm Dimension of embedding
Epatch Point amounts of one curve included in one patch
h Number of attention heads

This work was supported in part by the Strategic Priority Research
Program of the Chinese Academy of Sciences (Grant No. XDB0600400),
the National Natural Science Foundation of China (Grant No. 52102112),
and the Fundamental Research Funds for the Central Universities, China
(Grant No. xzy012022072). (Corresponding authors: Jiangtao Feng, Zhiyu
Mao, Zhongwei Chen)

Yunpeng Liu, Zhiyu Mao, and Zhongwei Chen are with the Power Bat-
tery & Systems Research Center, the State Key Laboratory of Catalysis,
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian
116023, China. (e-mail: liuyunpeng1994@dicp.ac.cn; zhymao@dicp.ac.cn;
zwchen@dicp.ac.cn).

Moin Ahmed is with the Department of Chemical Engineering, University
of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
(e-mail: moin.ahmed@uwaterloo.ca).

Jiangtao Feng is with the Department of Environmental Science & Engi-
neering, School of Energy and Power Engineering, Xi’an Jiaotong University,
Xi’an, 710049, China (e-mail: fjtes@xjtu.edu.cn).

n Input size
nc Serial number of the current charging cycle
V, I, T,Q Terminal voltage, current, temperature, and capac-

ity
xc Picked cycle amount in the current stage
xi Picked cycle amount in the initial stage
Abbreviations
BMSs Battery management systems
CCL Current cycle life
CNN Convolutional neural network
DS-ViT-ESA Dual-stream ViT with the ESA mechanism
DS-ViT-SA Dual-stream ViT with the SA mechanism
EOL End of life
ESA Efficient self-attention
LIBs Lithium-ion batteries
LSTM Long short-term memory
MAE Mean absolute error
MHESA Multi-head efficient self-attention
MHSA Multi-head self-attention
RMSE Root mean square error
RUL Remaining useful life
SA Self-attention
ViT Vision Transformer
ViT-ESA ViT with the ESA mechanism
ViT-SA ViT with the SA mechanism

I. INTRODUCTION

L ITHIUM-ION batteries (LIBs) are widely employed in
numerous energy storage scenarios, such as aerospace,

electronic product, and electric vehicles, owing to their
strengths, including high energy density, long cycle life, and
high output power [1, 2]. However, the concomitant inter-
nal side reactions of LIBs will inevitably lead to battery
performance degradation, increased equipment maintenance
costs, and destructive device malfunction. When the actual
battery performance declines to a particular failure threshold
of approximately 70%∼80% of the rated capacity, LIBs can
be considered to reach their end of life (EOL) [3]. If the failed
LIBs run continuously, uncontrollable safety problems would
surge, leading to short circuits and even spontaneous com-
bustion of electric vehicles. Therefore, battery management
systems (BMSs) are widely employed in all kinds of electric
devices to estimate accurately the LIBs’ health status by some
diagnosis indexes, such as state of health (SOH), current cycle
life (CCL), and remaining useful life (RUL) [4]. Unfortunately,
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accurate lifetime estimation faces huge challenges because
LIBs’ aging behavior is a non-linear electrochemical process
with peculiarly complex intrinsic properties and varies consid-
erably under uncertain operating conditions [5].

Generally, the available prediction methods for LIBs’ life-
time can be divided into model-based methods and data-
driven methods [6]. The model-based methods could deeply
investigate the electrochemical mechanism and build the math-
ematical model of LIBs’ aging process [7]. Such the modeling
process is usually complex and requires prior knowledge about
the battery aging behavior, which greatly restricts the practi-
cal applications [8]. Data-driven approaches have displayed
enormous potential for estimating the battery’s health status
because these approaches could avoid complicated mathemat-
ical or physical modeling [9]. Generally, the data-driven ap-
proaches could be subdivided into health-indicator (HI)-based
methods and end-to-end deep learning (DL) methods. For HI-
based methods, the correlations between battery lifetime and
extracted HI will directly affect the prediction performance
[10]. Recently, some HIs have been widely employed to study
the batteries’ aging mechanisms, such as incremental capacity
analysis (ICA), differential capacity analysis (DQA), differen-
tial voltage analysis (DVA), differential thermal voltammetry
(DTV), etc. [11]. Wei et al. [12] employed the Gaussian
process regression (GPR) method based on the ICA to ac-
curately predict LIBs’ RUL. Afshari et al. [13] used sparse
Bayesian learning (SBL) to investigate a battery’s early life-
time prediction based on the DQA and DVA curves. Li et
al. [14] established the battery aging model with the multi-
output GPR and particle filter (PF) algorithms, and the hidden
features were extracted from the DTV curves. Although these
approaches perform well, manual operation is unavoidable in
the HI extraction process, which is time-consuming and needs
vast domain knowledge.

End-to-end DL methods have drawn more and more atten-
tion because they can automatically grasp the hidden features
and directly map the underlying relationship between the
raw data and the battery lifetime. Various DL algorithms
have recently been employed to study LIBs’ RUL prediction
performance. Ma et al. [15] proposed a DL framework in
which the convolutional neural network (CNN) was combined
with the long short-term memory (LSTM), and this framework
was adapted for long-term battery capacity prediction. Wei et
al. [16] proposed a model combining Monte Carlo dropout and
gated recurrent unit (GRU) to describe the uncertainty of LIBs
RUL estimation. Jiao et al. [17] proposed a PF framework
based on a conditional variational autoencoder (CVAE) and
a reweighting strategy to predict the batteries’ RUL. Hong
et al. [18] proposed an approach that used a dilated CNN
to realize the swift RUL prediction with a few cycles of the
target battery. Compared with the HI-based method, the above
end-to-end deep models exhibit similar characteristics, namely,
no feature engineering and less prior knowledge, enhancing
onboard BMSs’ practicability.

Three perspectives could be considered carefully to improve
the prediction performance and universality of the end-to-
end DL models: 1) A model input with more battery aging
information. Past investigations usually served the collected

inner-cycle signals, i.e., terminal voltage, current, temperature,
or capacity (V /I/T /Q) of each cycle, as the model input
[19, 20], and even only utilized the SOH sequences to pre-
dict subsequent degradation trajectory [21, 22]. However, the
terminal parameter differences along cycles contain abundant
information about the batteries’ health status. The cycle-to-
cycle aging information is accessible but less utilized for
battery lifetime prediction; 2) The enhanced generalization
ability for the battery aging condition does not appear in
the training dataset. The models in the past literature are
often applied to the target batteries under a similar charge-
discharge strategy with the training dataset. Meanwhile, the
fine-tuning process also has to be conducted to ensure RUL
prediction accuracy, meaning that an amount of historic aging
data of tested batteries is necessary [23–25]; 3) The inno-
vation of the DL model structures. The DL methods for
the battery lifetime prediction primarily focus on the CNN
model, LSTM model, and their variants, but their inherent
drawbacks are insurmountable. For example, the inductive bias
of the CNN model (locality and spatial invariance) would
negatively influence the extraction of global features [26],
which might lower the information interaction between the
battery aging cycles. The LSTM model could not capture
long-range context dependencies, especially when the battery
raw data is extremely long [27]. Besides, the low parallelism
and the overfitting problem for traditional temporal networks
also restrict the performance enhancement of RUL prediction.
Hence, a novel DL model structure is urgently needed to be
designed.

To handle the above issues, a novel DL network (noted as
DS-ViT-ESA) for battery lifetime prediction is proposed in this
paper. Firstly, to utilize inner-cycle and cycle-to-cycle aging
information more efficiently, a dual-stream parallel framework
is constructed to extract and fuse the multi-timescale hidden
features. Secondly, to decrease the negative influences of the
common models’ inductive bias on the LIBs’ lifetime predic-
tion, a vision transformer (ViT) is introduced because its self-
attention (SA) mechanism ensures flexibility and performance
in feature acquisition. This structure has been utilized in other
classical models (CLIP [28], BLIP [29], and DeiT [30]) as
an image encoder. Thirdly, based on the fact that the matrix
multiplication is associative, the efficient self-attention (ESA)
mechanism is introduced into the ViT structure, which exhibits
linear memory and computational complexity relative to the
input size. Meanwhile, this mechanism has an equivalent rep-
resentational capacity as the widely used dot-product attention
mechanism. Besides, more attention modules are integrated
into a neural network, which would bring superior estimation
performance [31, 32].

Unlike the previous LIBs’ lifetime prediction model, the
battery data matrix is split into a series of patches, similar
to the multi-channel images’ splitting process. Then, a stack
of transformer encoders could extract the high-level spatio-
temporal features in inner-patch and patch-to-patch informa-
tion more comprehensively [33]. Therefore, the prediction ac-
curacy about battery lifetime could be enhanced significantly.
Three main contributions of this work are listed as follows:

1) For many previous battery lifetime studies, a mass of
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the target battery’s aging cycles must be collected. By
contrast, this work just needs fewer aging cycles, which
consist of a few initial cycles and several current cycles
during the charging process. This setting could guarantee
the randomness of the working load and decrease the
operation cost for the onboard aging test.

2) A DS-ViT-ESA network, which integrates a dual-stream
framework, ViT, and ESA mechanism, is proposed to
map the relationship between original charging data and
battery lifetime under various charging strategies. The
dual-stream framework could capture and fuse the multi-
timescale hidden feature from inner-cycle and cycle-to-
cycle aging information. ViT structure could extract the
local and global spatio-temporal degradation features.
Introducing the ESA mechanism in the ViT structure
could optimize computation complexity and enhance
estimation performance.

3) The proposed approach achieves an outstanding battery
lifetime prediction, which has been testified in an open
dataset with many batteries. Then, this approach also
exhibits the effective zero-shot generalization ability
when predicting the target battery with the charging
strategy not appearing in the training dataset. Besides,
early lifetime prediction of one fresh battery could also
be achieved when the initial cycles serve as the model
input, expressing the practical application value.

The rest of this article is organized as follows. Section II
introduces the battery dataset. In Section III, the proposed DS-
ViT-ESA model is outlined. Section IV details the experiment
results and discussion. Conclusions are drawn in Section V.

II. DATA ANALYSIS

A. Battery data description and data cleaning
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Fig. 1. Degradation trajectories (a) and lifetime distribution statistical
histogram (b) of all batteries in the dataset.

Considering the sample amount of battery dataset and the
various charging strategies in practice, the experimental LIBs
datasets involving 72 different fast-charging strategies, coming
from Massachusetts Institute of Technology and Stanford
University were used in this study, which contains 124 high-
power LiFePO4 (LFP)/graphite batteries with a rated capacity
of 1.1 Ah, and its upper-cutoff voltage (UCV) and lower-cutoff
voltage (LCV) are 3.6 V and 2.0 V, respectively [34]. All
the aging processes were conducted at 30 °C in a thermal
chamber until the capacity reached 80% of the rated capacity.
A series of fast charging strategies were operated, which is

denoted as “C1(Q1%)-C2(80%)”, where C1 and C2 represent
the first and second fast charging rates, respectively, and Q1
represents the state of charge (SOC) at which C1 switches
to C2. The multi-stage constant current continued until the
SOC reached 80%, and then the batteries were charged to
the UCV using a 1C constant current-constant voltage (CC-
CV) strategy. Meanwhile, all the batteries were discharged
to the LCV at the same discharge rate (4C). Fig. 1a shows
the aging trajectories of 124 batteries, and all the capacity
fades are negligible in the first 100 cycles and accelerate
near the EOL. Fig. 1b displays the corresponding lifetime
distribution statistical histogram. All the batteries’ lifetimes
range from 150 to 2200 cycles, and they are principally
distributed between 500 and 1000 cycles.

The data cleaning of battery raw data was operated in
advance to optimize some existing data fluctuations in this
work, such as outliers and unexpected data slump or boom.
Firstly, the outliers of the terminal parameters should be picked
up and replaced with the average value of closely related
points. Secondly, the terminal data curves should be smoothed
to denoise via the savitzky-golay filter. Thirdly, to decrease
the computational complexity and meet the requirement of
the model’s input, the terminal data curves should also be
downsampled via the linear interpolation method. In this study,
the point numbers of all terminal data curves are identical (160
points of one curve).

B. Battery charging data analysis

The battery’s internal properties would determine its life-
time, which could be expressed by its electrical performance
and thermal properties. Hence, there are strong correlations
between battery lifetime and the monitored data. In this work,
the terminal parameter data during the charging process is
employed to describe the battery lifetime, which could be
demonstrated as follows: First, it is relatively easy and precise
to gain the terminal data during the practical charging process,
which is peaceful and stable. In contrast, the terminal data
during the discharging process could not be suitable and
even unreliable for forecasting the battery lifetime due to the
random workload. Therefore, the terminal charging data is
more reasonable for predicting the battery lifetime in practice.
Second, the batteries’ external electrical and thermal properties
with various lifetimes would be distinct, which could be
reflected by the terminal curve during the charging process.
Fig. 2 displays the V /I/T curves changing with Q of the
No.18 battery (the No.18 battery is an eighteenth battery in
the “2017-05-12 batchdata updataed struct errorcorrect.mat”
data file provided by Ref. [34]) during the charging process.
The battery lifetime of the No.18 battery is 782, under the
“5.4C(70%)-3C(80%)” charging strategy. Both in V vs Q
(V /Q) curves (Fig. 2a) and I vs Q (I/Q) curves (Fig. 2b),
there are clear distinctions for different aging cycles, including
the duration of the curve platforms and the position of the
turning points, because the LIBs’ internal properties would
change while the aging process. Meanwhile, the value, rising,
and falling rate of the T vs Q (T /Q) curves (Fig. 2c) also vary
for different aging cycles. Although the chamber temperature
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is fixed, the battery’s surface temperature gradually rises along
with the aging process due to the heat accumulation from
the previous discharging stage. When the current maximum
charging capacity is near 80% of the rated capacity, the surface
temperature decreases clearly due to the sharply reduced
discharging time. Therefore, the V /I/T /Q data during the
charging process serve as the model input in this study.
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Fig. 2. Electrical performances and thermal properties of the No. 18 battery
during the charging process: (a) V /Q curves; (b) I/Q curves; (c) T /Q curves.
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Fig. 3. (a) The V /Q curve comparisons of 100th cycle for No.15 battery
and No.16 battery; (b) The V /Q curve comparisons of 100th cycle and 101th

cycle for No.15 battery.

Interestingly, since certain tolerable deviations exist for
industrial battery production, the batteries’ lifetime might be
distinct even though their charging-discharging strategies are
identical. For example, the EOL values of the No.15 battery
and No.16 battery (the No.15 battery and No.16 battery are
the fifteenth battery and the sixteenth battery, respectively, in
the “2017-05-12 batchdata updataed struct errorcorrect.mat”
data file provided by Ref. [34]), are 877 and 714 cycles,
respectively. However, they are under the identical charging-
discharging strategy (5.4C (60%)-3C (80%)). As shown in
Fig. 3a, when the CCL value is 100 cycles, the two batteries’
V /Q curves are almost identical, but the RUL values of the
No.15 battery and No.16 battery are 777 cycles and 614
cycles, respectively. Besides, as displayed in Fig. 3b, the V /Q
curves of the No.15 battery’s neighboring aging cycles are
also indistinguishable, which would cause unreliability and
instability for the development of the DL models.

In this work, the cycle-to-cycle aging information is gained
by calculating all the terminal parameter differences between
each cycle and 1st aging cycle, and this supplement input has
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Fig. 4. All the parameter difference curves of the 100th cycle with the 1st

cycle, and 101th cycle with the 1st cycle of the No.15 battery (a: V , b: Q, c:
I , and d: T ).
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Fig. 5. Model input structure of V , I , T , and Q data.

been proven to work for LIBs’ lifetime prediction by some
literature [35, 36]. Fig. 4 displays the parameter difference
curves (a: V , b: I , c: T , and d: Q) of the specified cycles
with the 1st cycle for the No.15 battery. Compared with
the indistinguishable V /Q curves (Fig. 3b), there are distinct
differences, including the orientation, position, and value of
the peaks for all the parameter differences curves. Therefore,
all the terminal parameter differences would also serve as the
supplement model input to achieve the end-to-end prediction
and avoid the demand of the prior knowledge.

III. PROPOSED APPROACH

A. Input data generation

Based on the representations of Section II-B, the first xi

charging cycles reflecting the initial status and the current xc

charging cycles reflecting the current aging status are picked
up for battery lifetime prediction. This data matrix consisting
of initial and current cycles serves as the model input, in which
the degradation characteristics contained in these aging cycles
could be captured more preciously and robustly. The RUL and
CCL of a running battery could be gained when the model
input consists of the first xi cycles and current xc cycles, and
the early lifetime prediction of one fresh battery also could be
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Fig. 6. Detailed illustration of DS-ViT-ESA algorithm.

achieved when the model input consists of the first xi + xc

cycles. Fig. 5 displays the specific structure of the input matrix,
which is similar to the multi-channel image data, and this input
matrix has four channels (c), i.e., V , I , T , and Q curve data
during the charging process. Considering the computational
complexity, this matrix’s height (h) is set to 160, and the width
(w) of this matrix is set to 15, in which xi and xc are set to 5
and 10, respectively. In detail, the initial aging data originate
from the 1st to 5th charging cycles, and the current aging data
originate from (nc-9)th to nc

th cycle (nc is the serial number
of the current charging cycle; 15 ≤ nc ≤ EOL of this battery).
In other words, the measured CCL value is the nc, and the
measured RUL value is the difference between the EOL and
nc. Finally, the three-dimensional matrix (c×w×h: 4×15×160)
is created as the model input. Besides, to speed up the model
convergence rate, the input data, before being fed into the
model, also needs to be normalized via z-score normalization.

B. DS-ViT-ESA structure

In 2020, the Google Brain team put forward the vision
transformer, i.e., ViT, which employed a pure transformer
directly to the sequence of image patches to classify the
full image, and this has performed state-of-the-art accuracy
on multiple image recognition benchmarks [37]. Because the
battery data matrix is highly similar to the multi-channel
image, the performance of the ViT variant applied for battery
lifetime prediction is worth studying. In this work, the ViT

with a dual-stream structure and the efficient self-attention
mechanism (DS-ViT-ESA, as shown in Fig. 6) is proposed and
applied to estimate the LIBs’ RUL, CCL, and early lifetime
effectively.

1) Embedding of battery data: After the data preprocessing,
the raw data matrix (R) could be inputted into Stream-
1 directly to extract the inner-cycle aging feature, and the
parameter difference matrix (D) between each cycle and 1st

aging cycle serves as the input of Stream-2, which would
capture the cycle-to-cycle aging features. Before inputting in
a stack of transformer encoder layers, the data matrix needs
to be embedded into a sequence divided into patch embedding
and position embedding. The two data matrices are split into a
series of patches with the same size. Based on the description
in Section III-A, the C and E are the w and h of one data
matrix, respectively. The Cpatch and Epatch are the w and h of
one patch, respectively, representing the selected battery aging
cycles and the portion of curves. So the data matrix is divided
into m = (C/Cpatch)× (E/Epatch) patches and the m is the
length of the input sequence of the subsequent transformer
encoder.

Because the backbone of both the two streams is identical,
the detailed structure of Stream-2 will be described. Every
patch is flattened and then passes through a linear projection
operation, changing its dimension to dm. In a ViT structure,
a classification (CLS, marked by “∗”) token plays a vital
role because its introduction enables the model to perform
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global semantic modeling of one image [37]. Therefore, an
extra learnable vector with dimension dm is joined with the
patch embedding obtained before. This vector contains the
learned aging features and would ultimately be fed into the
output layer. Besides, the transformer-based model itself lacks
an inherent mechanism to grasp the relative positional rela-
tionships between elements in the input sequence. However,
the relative position of the terminal parameters is vital for
precise battery lifetime prediction. Next, the learnable one-
dimensional position embedding with dimension dm is added
with patch embedding to gain the final input sequence of a
stack of transformer encoder layers.

2) Transformer encoder with the efficient self-attention
mechanism: As displayed in the right of the Fig. 6, one
transformer encoder with the ESA mechanism mainly consists
of a multi-head efficient self-attention (MHESA) block, a two-
layer multilayer perceptron (MLP), and a layer normalization
(LN). The MHESA mechanism and structure will be discussed
first.

It is well-known that the kernel of the classical transformer
encoder is the multi-head self-attention (MHSA) mechanism,
which would efficiently use parallel computing, thereby en-
dowing the model with expressive power and learning capa-
bilities [38, 39]. Through the collaborative manner of multiple
attention heads, it could generate various attention represen-
tations, facilitating the simultaneous capture of features and
relationships at different levels in the input sequence. The self-
attention (SA) mechanism is essentially a scaled dot-product
operation for each query with all the keys as follows:

D(Q,K,V) = ρ

(
QKT

√
dk

)
V (1)

where Q ∈ Rn×dq , K ∈ Rn×dk , and V ∈ Rn×dv represent
matrices that pack together sets of queries, keys, and values,
respectively. n represents the input size. dq , dk, and dv are
the dimensions of Q, K, and V, respectively, in which√
dk is employed to adjust the product to avoid extremely

small gradients [40]. ρ donates the scaling normalization. For
MHSA mechanism, ρ(Y) = σrow(Y), in which σrow donates
applying the softmax function along each row of matrix Y.
The formula for the MHSA mechanism is built on the above
SA weight matrix, as shown below:

Multihead(Q,K,V) = Concat(head1, ..., headh)W
O

(2)
where WO ∈ Rhdv×dm represents a projection matrix for
the multi-head output, in which h represents the number of
attention heads, and each headi, i = 1, .., h, processes a
single SA function characterized by its own learned projection
matrices as:

headi = D
(
QWQ

i ,KWK
i ,VWV

i

)
(3)

where WQ
i ∈ Rdm×dq , WK

i ∈ Rdm×dk , and WV
i ∈ Rdm×dv

represent projection matrices which are utilized to create
different subspace representations of the Q, K, and V in the
ith projection mode, respectively.

Fig. 7 displays the detailed architecture comparison between
the MHSA and MHESA, in which the blue dotted boxes
donate their respective attention structures. In the two blue
dotted boxes, each small box represents the input, output,
or intermediate matrix. Around the box is the name of the
associated matrix, and inside it are both the variable name
and the matrix’s dimensions. X, D, and E denote the input
and the output of the scaled dot-product attention and efficient
attention, respectively. S and G donate the pairwise similari-
ties and global context vectors, respectively. ρ, ρq , and ρk are
the scaling normalization on S, Q, and K, respectively. n, d,
dk, and dv are input size and the dimensionalities of X, K,
and V, respectively. ⊗ and ⊘ denote the matrix multiplication
and the scaled operation, respectively. As shown in Fig. 7a,
for the classical SA mechanism, the pairwise similarities S
between each pair of tokens should be calculated, leading
to O(n2) memory complexity and O(dkn

2) computational
complexity. Such networks’ memory and computational cost
grows quadratically with n [41]. It would cause an enormous
resource burden for the embedded processors when the large-
scale battery data is continuously inputted into BMSs [42].
To address this issue, attention mechanism variants, i.e., the
ESA mechanism, which is inspired by the fact that matrix
multiplication is associative, have been introduced in this
work. Its detailed structure is shown in Fig. 7b. Compared
with the dot-product attention, efficient attention avoids the
attention map S about all among tokens, which is replaced
by the generation of global context vector G with a global,
semantic description of the input feature X. The following
equation defines the efficient attention mechanism:

E(Q,K,V) = ρq(Q)
(
ρk(K)TV

)
(4)

where ρq , and ρk are the scaling normalization on Q, and
K, respectively. For this work, ρq(Y) = σrow(Y), and
ρk(Y) = σcol(Y), in which σrow, σcol denote applying the
softmax function along each row or column of matrix Y,
respectively. It can be seen that the main improvement of the
ESA mechanism is the switching of the order from (QKT )V
to Q(KTV). Hence, the memory complexity and computa-
tional complexity are decreased to O(dkdv) and O(dkdvn),
respectively, and dkdv is far less than n2 in practical applica-
tion, which enhances the calculation efficiency. Importantly,
each row of σrow(QKT ) sums up to 1, which represents
a normalized attention distribution over all positions, and
the matrix σrow(Q)σcol(K)T possesses a similar property
[31], so it is almost equivalent between dot-product and
efficiency attention. Besides, enhanced estimation performance
is achieved by integrating additional attention modules into
the neural network. The ESA mechanism could be introduced
into the ViT with the dual-stream structure to decrease the
computational complexity and enhance the battery lifetime
prediction accuracy.

Finally, each transformer encoder layer contains a two-
layer MLP with GELU non-linear activation function and a
dropout layer, which could enhance the model’s non-linearity
ability and prevent overfitting. To address the issues of gra-
dient vanishing while promoting information flow within the

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2024.3434553

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 26,2024 at 02:33:52 UTC from IEEE Xplore.  Restrictions apply. 



Scaled Dot-Product 

Attention

Concat

Linear

h × heads Q: 

n×dk

KT: 

n×dk

V: 

n×dv

X:

n×d

ρ(S): 

n×n

×

×

D:

n×dv

Efficient Attention

Concat

Linear

h × heads ρk(K)T: 

dk×n

V: 

n×dv

X:

n×d

G: 

dk×dv

×

×

E:

n×dv

ρq(Q): 

n×dk

/ 

(a) (b)

Query Key Value

Input

Pairwise

Similarities

Output

Query Key Value

Input

Global

Context

Vectors

Output

Fig. 7. Architecture of the MHSA and its scaled dot-product attention (blue dotted box) (a); Architecture of the MHESA and its efficient attention (blue
dotted box) (b).

network, the residual connections are used before MHESA and
MLP. Meanwhile, introducing the LN layer in the transformer
encoder layer normalizes each feature dimension, enhancing
the robustness and convergence of the model.

3) Late fusion of feature vectors from dual stream: As
shown in the top of the Fig. 6, the two feature vectors could
be gained after a stack of transformer encoders in the dual
streams containing the inner-cycle and cycle-to-cycle battery
aging information. The two-layer MLP with ReLU non-linear
activation function is employed as late fusion in a dual-stream
network and outputs the RUL and CCL to merge the two
features. This study selects the joint mean square error (MSE)
loss as the loss function because this model has two outputs.
The model is trained with an Adam optimizer with an initial
learning rate of 0.001, which would be gradually reduced
based on the network’s performance on the training dataset
to avoid the overfitting problem.

IV. RESULTS AND DISCUSSIONS

To ensure the prediction accuracy of the DS-ViT-ESA
model, this work first uses grid search to gain the best
hyperparameter combination of the DS-ViT-ESA model. Then,
the DS-ViT-ESA model’s sensitivity to the input data type
is tested. Meanwhile, the ablation experiments of the DS-
ViT-ESA model are also carried out. Finally, the prediction
accuracy of the DS-ViT-ESA model is compared with other
baseline methods. This study implements the models’ simula-
tions in Python 3.7 with the PyTorch packages on PyCharm.
All run on a PC with an AMD EPYC 7402 48 cores (2.8 GHz)
and an NVIDIA RTX 3080 GPU with a 24 GB GDDR6X.

The dataset described in Section II is randomly divided into
two datasets: the training and test datasets. In the training
dataset, 20% of the data are randomly selected as the validation
dataset to search the model’s hyperparameters and evaluate the
model’s estimation ability during the training process. Then, to
display the prediction performance of the trained model, this

work uses the 30 raw battery data as a test dataset, including
25 different charging strategies. Among these, 12 charging
strategies do not appear in the training dataset.

A. Evaluation metrics

For algorithm evaluation, the three metrics are introduced
as follows: Mean absolute error (MAE)

MAE =
1

N

N∑
i=1

|yi − ŷi| (5)

Mean absolute percentage error (MAPE)

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (6)

Root mean square error (RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (7)

where N is the number of data participating in the error
calculation. yi is the real value and ŷi is the corresponding
predicted value.

B. The configuration of DS-ViT-ESA

In this study, the crucial hyperparameters of the models
are tuned using grid search, which includes Batch size ∈
{128, 256, 512, 1024}, Cpatch ∈ {1, 3, 5, 15}, and Epatch ∈
{5, 10, 16, 32}, where the bold values indicate the selected
optimal hyperparameters. Then, all the hyperparameters are
displayed in Table I.

It is well-known that the model can learn high-level feature
representations by increasing the depth of the network, so
the influence of network depth on the prediction accuracy of
DS-ViT-ESA is studied as shown in Table II. The enhanced
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TABLE I
HYPERPARAMETERS SETTINGS.

Hyperparameters Values
Batch size 512
Dropout 0.1

The aging cycles included in one patch Cpatch 3
The point amounts of one curve Epatch 16

The dimension of embedding dm 256
The number of attention heads h 8

Hidden neurons of the MLP layer in the encoder 256
Hidden neurons of the MLP layer in late fusion 512

expressive power enhances the RUL and CCL prediction
accuracy when the network depth is increased from 1 to 2.
When the network depth of the DS-ViT-ESA model is set to
2, the MAPE, RMSE, and MAE of RUL prediction are low as
5.40%, 15.45 cycles, and 10.28 cycles, respectively, and the
MAPE, RMSE, and MAE of CCL prediction are low as 4.64%,
17.03 cycles, and 12.31 cycles, respectively. However, the
prediction performance rapidly decreases while the network
depth continues to increase, which might result from vanishing
gradients or difficulties in information propagation in deep
networks. Therefore, based on this result, the depth of the
DS-ViT-ESA model is set to 2 unless otherwise stated in this
work.

C. The battery RUL and CCL prediction performances of the
DS-ViT-ESA model

Fig. 8a shows the RUL prediction result of 30 target
batteries with 25 various charging strategies in the test dataset.
Each battery is marked with a serial number (Battery ID),
and the colours in the colour bar represent the Battery ID of
30 target batteries. The horizontal and vertical axes represent
the measured and predicted RUL, respectively. The closer
the point of one curve is to the black-dotted baseline, the
lower the RUL prediction error, so the most predicted RUL
values are extremely close to the corresponding real values,
and the curves overlap each other. Fig. 8b illustrates the RUL
prediction error result, and the proportion of RUL prediction
error less than 40 cycles reaches up to 95% as shown in the
frequency histogram.

Fig. 8c shows the CCL prediction results in the test dataset.
Unlike the RUL prediction plot, the horizontal and vertical
axes represent the measured CCL and the predicted CCL,
respectively. A similar tendency also can be found, namely
that the CCL prediction results nearly coincide with the black-
dotted baseline. Fig. 8d illustrates the distribution of CCL
prediction errors, and the proportion of CCL prediction errors
less than 40 cycles reaches up to 95% as shown in the
frequency histogram. Therefore, even though the lifetimes of
target batteries vary from 400 to 1800 cycles, the model could
mine the mapping relationship between the battery lifetime
and the original terminal charging data.

Because some charging strategies in the test dataset don’t
appear in the training dataset, Table III displays the lifetime
prediction result for target batteries with different charging
strategies. Interestingly, these metrics for the batteries under
the charging strategies that do not appear in the training

dataset are just a little higher than those of the batteries
with charging strategies that appear in the training dataset.
Therefore, the DS-ViT-ESA model also displays effective zero-
shot generalization capacity. Furthermore, a single battery
from the tested batteries with charging strategies not appearing
in the training dataset is picked up to observe the RUL (9a and
b) and CCL (9c and d) prediction results. Most differences
between predicted and true values are controlled within 20
cycles. Besides, the more accurate RUL and CCL predictions
could be achieved when nc is close to the EOL of this battery
because the capacity degradation is distinct in the last stage,
and there is more aging information.

D. The early battery lifetime prediction performance of the
DS-ViT-ESA model

For one fresh battery, it is very prospective to accurately
estimate its lifetime based on a few early aging cycles, so
this proposed model’s early lifetime prediction performance
is studied in this work. To study the influence of the demand
amount of tested aging cycles on the early prediction results,
the different early aging cycles (15 ≤ nc ≤ 100) are selected
as the model input. Fig. 10a and b show the lifetime prediction
and errors of 30 target batteries, in which the horizontal axis
represents the true lifetime and vertical axis in Fig. 10a and
b represent the predicted value, and vertical axis, respectively.
Meanwhile, perpendicular to the horizontal axis, the dotted
stub represents one battery. The dots’ colour in one dotted
stub is determined by the nc displayed in the colour bar.
Hence, the closer the point of one dotted stub is to the black-
dotted baseline, the more accurate early lifetime prediction is.
The detailed results of early lifetime prediction are displayed
in Table IV, and the absolute error can be controlled within
5.0% for nearly all target batteries. Besides, as displayed in
Fig. 10b, the predicted errors of the red points (nc near 100)
are closer to zero compared with those of the blue points (nc

near 15), indicating the bigger nc is in favor of the improved
lifetime prediction accuracy. This is consistent with the result
of Section IV-C. As shown in Table IV, even when the fresh
batteries just run for the first 15 aging cycles (nc = 15),
the accurate early lifetime prediction also could be realized
with MAPE, RMSE, and MAE less than 2.16%, 25.88 cycles,
and 20.52 cycles. Meanwhile, the most accurate early lifetime
prediction of this model could be realized (MAPE: 1.82%;
RMSE: 22.91 cycles; MAE: 18.05 cycles) when nc increases
to 80, but the test demand of initial aging cycles would boom
from 15 to 80 and test duration would increase almost fivefold.
Therefore, considering both the prediction accuracy and the
operation cost, the nc could be set to 15 for the early battery
lifetime prediction.

E. The influence of different input format

Comparative experiments are carried out with the different
inputs to study the influence of the model input format on the
battery lifetime prediction. Namely, one parameter is individ-
ually removed from the V /I/T /Q combination data. As shown
in Table V, compared with the results of any three-parameter
combinations, the best RUL and CCL prediction performance
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TABLE II
THE INFLUENCE OF NETWORK DEPTH ON THE PREDICTION ACCURACY OF DS-VIT-ESA.

RUL prediction CCL prediction
Depth 1 2 3 4 1 2 3 4

MAPE (%) 9.41 5.40 6.02 7.87 11.05 4.64 6.80 8.52
RMSE (Cycles) 28.33 15.45 16.14 20.07 34.20 17.03 21.07 25.36
MAE (Cycles) 20.40 10.28 11.70 14.42 24.85 12.31 16.14 20.75
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Fig. 8. Battery lifetime prediction of 30 target batteries: (a) RUL prediction results; (b) RUL prediction errors, and the inset is the frequency histogram of
RUL prediction error; (c) CCL prediction results; (d) CCL prediction errors, and the inset is the frequency histogram of CCL prediction error.

could be realized when all terminal parameters are considered,
so all terminal parameters should be collected and then serve
as the model input. Besides, when the parameter T is not
included in the model input, the evaluation metrics of RUL
prediction exhibit the highest error (MAPE: 7.57%, RMSE:
20.63 cycles, MAE: 14.22 cycles). Meanwhile, when the
parameter I is not included in the model input, the evaluation
metrics of CCL prediction exhibit the highest error (MAPE:
9.81%, RMSE: 27.63 cycles, MAE: 21.37 cycles). Therefore,
among these parameters, the parameter T and parameter I
play vital roles in the accuracy of RUL and CCL prediction,

respectively, and the relative terminal parameters should be
paid more attention during the data collection.

F. Ablation experiment

To investigate the performance contribution of the dual-
stream structure and the ESA mechanism, the ablation ex-
periments are conducted via controlling the model structure:
(a) dual-stream ViT with the self-attention mechanism (DS-
ViT-SA); (b) ViT with the efficient self-attention mechanism
(ViT-ESA); (c) ViT with the self-attention mechanism (ViT-
SA). Meanwhile, the other baseline methods, (d) CNN model
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TABLE III
THE LIFETIME PREDICTION RESULTS FOR TARGET BATTERIES WITH DIFFERENT CHARGING STRATEGIES.

Charging strategies RUL prediction CCL prediction
MAPE

(%)
RMSE

(Cycles)
MAE

(Cycles)
MAPE

(%)
RMSE

(Cycles)
MAE

(Cycles)
13 types appearing in

the training dataset 4.17 14.25 9.39 4.14 14.71 10.48

12 types not appearing
in the training dataset 6.89 16.36 11.54 5.36 19.94 14.84

TABLE IV
THE EARLY LIFETIME PREDICTION RESULTS OF THE DS-VIT-ESA MODEL WITH CERTAIN nc .

Early lifetime prediction for
target batteries in the test dataset

nc 15 25 40 60 80 100
MAPE (%) 2.16 2.00 1.90 1.91 1.82 1.95

RMSE (Cycles) 25.88 25.66 24.16 23.96 22.91 23.14
MAE (Cycles) 20.52 19.59 18.75 18.38 18.05 18.73

TABLE V
THE INFLUENCE OF THE INPUT FORMAT ON THE BATTERY LIFETIME PREDICTION.

Different input RUL prediction CCL prediction
MAPE

(%)
RMSE

(Cycles)
MAE

(Cycles)
MAPE

(%)
RMSE

(Cycles)
MAE

(Cycles)
V /I/T /Q 5.40 15.45 10.28 4.64 17.03 12.31
I/T /Q 6.62 16.40 11.06 5.63 19.59 14.75
V /T /Q 7.42 19.20 13.19 9.81 27.63 21.37
V /I/Q 7.57 20.63 14.22 7.24 23.70 17.04
V /I/T 7.49 19.38 13.50 8.48 25.46 19.69

TABLE VI
THE INFLUENCE OF THE INPUT FORMAT ON THE BATTERY LIFETIME PREDICTION.

Models RUL prediction CCL prediction Training
time
(h)

MAPE
(%)

RMSE
(Cycles)

MAE
(Cycles)

MAPE
(%)

RMSE
(Cycles)

MAE
(Cycles)

DS-ViT-ESA 5.40 15.45 10.28 4.64 17.03 12.31 17.31
DS-ViT-SA 5.88 16.17 10.60 5.22 18.80 14.59 19.57

ViT-ESA 8.94 24.85 18.51 7.02 23.39 16.15 13.26
ViT-SA 9.36 26.42 19.33 8.31 24.62 18.32 14.95
CNN 53.48 139.79 97.96 37.55 126.16 89.33 22.43

CNN-LSTM 27.27 71.61 55.23 72.68 98.51 72.39 24.67

and (e) CNN-LSTM model are also employed to verify
the superior lifetime prediction performance of the DS-ViT-
ESA model. Table VI exhibits these models’ battery lifetime
prediction results. Comparing the prediction results of DS-
ViT-ESA and ViT-ESA, as well as the results of DS-ViT-
SA and ViT-SA, the dual-stream structure could bring higher
prediction accuracy than the single-stream structure because
the multi-timescale aging information is captured and then
fused. Besides, comparing the prediction results of DS-ViT-
ESA and DS-ViT-SA, as well as the results of ViT-ESA
and ViT-SA, the introduction of the ESA mechanism in the
transformer encoder also could bring higher prediction perfor-
mance, implying this variant promotes more attention modules
into the neural network. Meanwhile, the models with the ESA
mechanism exhibit relatively lower training time, demonstrat-
ing that the ESA mechanism could decrease the computational
complexity of the model. Besides, the dual-stream structure
would introduce more parameters, so their training time is
higher than the single-stream structure. The CNN model is also
usually utilized for battery lifetime prediction because it can

effectively capture relationships between different parameters
in the input sequences. Meanwhile, the LSTM units are used to
replace the full connection layers of the CNN model because
they effectively capture and remember long-term dependencies
through a series of gate mechanisms. Compared with the two
baselines, the DS-ViT-ESA model exhibits superior battery
lifetime prediction accuracy because it can extract higher-
level hidden features. Meanwhile, the DS-ViT-ESA model also
displays less training cost due to its parallel structure. Hence,
this model would possess an outstanding predictive behavior
on batteries’ big data compared to another traditional network.

G. Prediction results under other datasets

The experimental temperature and cathode material of the
above dataset are fixed (30 °C and LFP, respectively), while the
graphite anode dominates the batteries’ degradation process, so
it is promising to employ this approach to other graphite anode
batteries. To testify to the generality of the proposed approach,
the two other open datasets from the University of Maryland
[43] and NASA [44] are employed to evaluate the developed
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Fig. 9. An example of battery lifetime prediction of one battery: (a) RUL prediction results; (b) RUL prediction errors, and the inset is the frequency histogram
of RUL prediction error; (c) CCL prediction results; (d) CCL prediction errors, and the inset is the frequency histogram of CCL prediction error.

approach. Table VII lists their experimental temperature and
cathode material. The batteries with 1.10 Ah (No.35, No.36,
No.37, and No.38) from the University of Maryland were
tested at a standard CC-CV protocol with a current rate of 0.5C
until the voltage reached 4.2 V. Then 4.2 V was sustained until
the charging current dropped to below 0.05 A. This dataset
did not collect the parameter T , so the other three parameters
served as the model input. The batteries were discharged at the
same rate (1C) to 2.7 V. The batteries (B0005, B0006, B0007,
and B0018) from NASA have a rated capacity of 2 Ah, which
were charged by the CC-CV protocol at the constant current
of 1.5 A to the constant voltage of 4.2 V until the charge
current dropped to below 20 mA, and then discharged at the
constant current of 2 A to the different LCV (2.7 V for B0005,

2.5 V for B0006, 2.2 V for B0007, and 2.5 V for B0018).
The rest of the battery data are utilized to train the proposed
model from scratch, and the battery lifetime prediction results
are also shown in Table VII. The prediction errors are still
relatively low, even if the experimental condition changes
drastically, indicating the proposed approach could apply to
different environmental temperatures and cathode materials.
Therefore, the results exhibit the outstanding robustness and
generalization of the proposed model.

H. Compared with other published approaches.

To further study the prediction performances of the proposed
model for battery lifetime, Table VIII lists some recently pub-
lished models that exhibit good lifetime prediction accuracy.
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Fig. 10. Early lifetime prediction of 30 different batteries from their first 15∼100 charge cycles: (a) early lifetime prediction results; (b) prediction errors.

TABLE VII
THE BATTERY LIFETIME PREDICTION UNDER DIFFERENT EXPERIMENTAL CONDITIONS.

Battery Cathode
material

Environmental
temperature

(◦C)

RUL prediction CCL prediction
MAPE

(%)
RMSE

(Cycles)
MAE

(Cycles)
MAPE

(%)
RMSE

(Cycles)
MAE

(Cycles)
No.35 LiCoO2 25∼30 4.69 5.82 4.74 4.59 5.97 5.09
B0018 LiNiCoAlO2 24 3.54 4.65 3.44 4.05 4.95 4.31

Compared with HCNN and TOP-Net(100) models, the pro-
posed model exhibits nearly state-of-the-art performance for
early lifetime prediction. In this work, the minimum demand
(15 cycles) of early aging cycles could be realized, which is
more beneficial for practical battery design and optimization.
Meanwhile, compared with the machine learning approach,
the proposed method exhibits higher accuracy (implied by low
MAPE) and stability (implied by low RMSE) even when the
demand for early aging cycles is dropped from 100 to 15.
Compared with the UKF-RVM method for RUL prediction,
the proposed method exhibits a lower MAPE with less aging-
cycle demand. The TOP-Net(100) method performs better
RUL prediction than the proposed model, while its aging-cycle
demand (100 cycles) is much higher than that of the proposed
method. Besides, the 100-cycle full discharging data under
constant current mode is necessary for the TOP-Net(100)
method to realize good RUL accuracy. At the same time, it is
impractical because the working load of the electric device is
dynamic and random. Although the RUL prediction accuracy
of the HCNN method is also better than that of the proposed
method, the aging-cycle demand of the proposed model is
lower than that of the HCNN method (20 cycles). Besides,
this proposed approach’s accurate CCL prediction ability could
also help researchers further grasp the battery’s health status.

V. CONCLUSION

This study proposes a novel DL method (donated as DS-
ViT-ESA) to realize end-to-end LIBs’ lifetime prediction, in
which a small amount of charging data is collected. DS-ViT-

ESA model integrates ViT structure, dual-stream framework,
and ESA mechanism, which could more efficiently capture
inner-cycle and cycle-to-cycle aging information. Experiments
display that the proposed model produces an accurate battery
lifetime prediction (RUL: 5.40%; CCL: 4.64%) using only 15
charging cycles, demonstrating the effectiveness and practi-
cality of the model. The model also exhibits a low prediction
error (RUL: 6.89%, CCL: 5.36%) for the charging strategies
not appearing in the training dataset, implying the effective
zero-shot generalization capacity. Moreover, the early lifetime
prediction with an error as low as 2.16% is also achieved
by utilizing only the first 15 charging cycles. Although the
prediction performance of this proposed model is not state-
of-the-art, the amount of demand for aging cycles is lowest
while ensuring the prediction accuracy and training cost. More
importantly, RUL and CCL could also be gained together,
which is beneficial for researchers to design and optimize new
batteries.

While this model has achieved relatively satisfied lifetime
prediction performance at a lower aging cycle demand, there
are still some limitations. Firstly, the approach works when
all the charging data is certain throughout the battery aging
process, especially for fixed application scenarios such as
electric unmanned delivery cars and electric buses. However,
the uncertain charging behavior which approximates real elec-
tric vehicles is not investigated. Then, the approach requires
the initial aging cycle to form the difference matrix, but
the first cycle is unknown sometimes, and it is hard to use
this dual-stream structure to predict the lifetime accurately.
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TABLE VIII
THE BATTERY LIFETIME PREDICTION UNDER DIFFERENT EXPERIMENTAL CONDITIONS.

Task Evaluation metrics Approaches
Proposed
method HCNNb[35] Machine-learning

approach [34] TOP-Net(100)c[45] UKF-RVMd[46]

Early lifetime
prediction

Early cycles used 15 60 100 100 -
MAPE (%) 2.16 1.12 7.5, 10.7f 1.47 -

RMSE (Cycles) 25.88 13 100, 214f 11 -
MAE (Cycles) 20.52 11 - 9 -

RUL
prediction

Requirement a/ % 1∼3 1∼4 - 4∼20 38∼96
MAPE (%) 5.40 3.55 - 2.85 14.64

RMSE (Cycles) 15.45 11 - 9 -
MAE (Cycles) 10.28 9 - 7 -

CCL
prediction

Requirement / % 1∼3 - - 4∼20 -
MAPE (%) 4.64 -e - 1.25 -

RMSE (Cycles) 17.03 - - 8 -
MAE (Cycles) 12.31 - - 6 -

a the ratio of the required aging cycles for lifetime prediction into the EOL.
b a hybrid deep learning approach consisting of a CNN network and attention mechanism.
c a two-dimensional CNN and one-dimensional CNN parallel hybrid deep learning approach.
d an integrated Unscented Kalman Filter (UKF) and RVM method.
e the relative metric of the method was not conducted.
f the two values are gained from two tests, respectively.

Nevertheless, this model gains considerable lifetime prediction
performance in a large-scale fast-charging battery dataset and
has the potential to be extended to real applications.
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