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Abstract—With the rapid development of deep learning, bat-
tery state of charge (SOC) estimation has made major strides.
However, the batteries’ inconsistency and changing working
conditions lead to the distribution discrepancy across domains,
which further affects the prediction accuracy of the pre-trained
model. Moreover, collecting sufficient and labeled data is labor-
intensive to gain a well-performed SOC estimator. To overcome
these drawbacks, this paper proposes a novel SOC estimation
framework based on adversarial domain adaptation. Firstly, a
distinctive SOC estimator is constructed and trained to capture
the mapping relationship between the original input and the
battery SOC based on the offline source dataset with a specific
working condition. Then, an adversarial network with a recon-
struction module and maximum mean discrepancy constraint is
designed to extract the domain-invariant features and decrease
distribution discrepancy across domains. Thus, the pre-trained
model could be transferred to the different working conditions
using only the limited and unlabeled target data. Experimental
results demonstrate that the best cross-domain RMSE of the
proposed transfer framework are 1.33%, 2.57 %, and 1.45 % for
fixed ambient temperatures, changing ambient temperatures, and
changing battery type, respectively, indicating this framework
emerges as a promising solution for the precise battery SOC
cross-domain estimation.

Index Terms—Lithium-ion batteries, State of charge estima-
tion, Transfer learning, Unsupervised domain adaptation, Charg-
ing conditions.
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Dt,train,Dt,test Labeled and unlabeled target domain
Lmmd,Lpred,Lrec,Ladv,Ltotal MMD loss, SOC estimation loss,

reconstruction loss, adversarial training loss, and total
loss during the transfer process

P(xt),P(xt) Marginal probability distributions from Ds and
Dt

θfs
e
, θft

e
Parameters of fs

e and f t
e

θfre , θfdis , θfpred Parameters of fre and fdis, and fpred
F s, F t,train Domain-invariant features from Ds and Dt

fs
e , f

t
e Feature encoder for Ds and Dt

fre, fpred, fdis Reconstructed decoder, SOC predictor, and
domain discriminator

xs, xt Input vector from Ds and Dt

ys, yt SOC corresponding to xs and xt

Abbreviations
BiLSTM Bi-directional LSTM
BMS Battery management system
CNN Convolutional neural network
CRNN Convolutional recurrent neural network
DARM An adversarial domain adaptation framework with the

reconstruction module and the MK-MMD constraint
DNN Deep learning network
DWS 1D CNN Depthwise separable 1D CNN
IID Independent identical distribution
KDE Kernel density estimation
LIBs Lithium-ion batteries
LSTM Long short term memory
MAE Mean absolute error
MK-MMD Multiple kernel MMD
MMD Maximum mean discrepancy
MSE Mean squared error
Resblock Residual block
ResNets Residual network
RKHS Reproducible kernel Hilbert space
RMSE Root mean square error
RNN Recurrent neural network
SOC State of charge
TL Transfer learning
UDA Unsupervised domain adaptation

I. INTRODUCTION

OWING to the advantages of high energy density,
low manufacturing cost, and low self-discharge rate,

Lithium-ion batteries (LIBs) are widely employed in various
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applications, such as electric vehicles, electronic equipment,
and photovoltaic systems [1, 2]. The battery management
system (BMS) can guarantee the safety and high-efficiency
operation of batteries [3, 4]. Among many functions, the state
of charge (SOC) is a vital metric to reflect the battery’s
remaining charge at present [5]. However, the batteries’ SOC
could not be directly gauged, and it is determined using other
parameters measured by sensors in most cases [6]. Therefore,
developing appropriate SOC estimation methods has attracted
much research interest.

The classical SOC estimation approaches can be categorized
into two kinds: the open circuit voltage method and the
coulomb counting approach [7]. However, these methods not
only need precise sensors or inference algorithms to avoid the
problem of data drift caused by random noises but also ensure
the tested batteries’ steady state to interface the over potentials’
elimination [8]. These harsh and fussy operation requirements,
make them impractical in complex scenarios. To overcome
the above drawbacks, numerous model-based and data-driven
SOC estimation approaches have been investigated [9]. Model-
based approaches can be divided into equivalent circuit models
and electrochemical models. The former is relatively easy and
common but exhibits terrible performance when the battery is
exposed to an extreme operational environment such as low
environmental temperature or high current density. Meanwhile,
the latter is relatively more accurate, while the modeling
parameters must be additionally decided in this process, which
is unsuitable for batteries’ online monitoring task [10].

Deep learning (DL) approaches for LIBs’ SOC estimations
have become increasingly attractive because their neural net-
work possesses powerful nonlinear mapping capacity [11].
Generally, without the participation of complicated electro-
chemical properties of the battery, the SOC values could be
inferred based on the online monitoring data, by a series of
black-box models, such as the convolutional neural network
(CNN) [12], recurrent neural network (RNN) [13], long short
term memory (LSTM) [14], gate recurrent unit (GRU) [15],
fully connected (FC) network [16], etc. The regular data-driven
SOC estimation can construct SOC estimation models based
on historical cycle data, which are built on the assumption
that the training dataset (source domain) and test dataset (target
domain) follow the same distribution [17], namely independent
identical distribution (IID). Unfortunately, the source and
target domains usually have related but different data distri-
bution in practices. The changing working conditions (such
as different ambient temperatures and charging/discharging
protocols) or internal properties (such as individual differences
in battery manufacturing processes) would inevitably result in
discrepant data distributions across domains, namely domain
shift [18]. Once the operating conditions are out of the training
dataset, the pre-trained SOC estimator could not work well for
monitoring the target battery. Theoretically, suppose the SOC
estimator’s generalization ability would like to be improved
for one-type batteries in changing situations. In that case,
a vast training dataset should be collected to fully cover
the various operating conditions, which is labor-intensive and
time-consuming.

Although the pre-trained model based on the source domain

could not be directly employed for the target tasks due
to domain drift, there is shared knowledge about batteries’
SOC across domains. Therefore, it is feasible to enhance the
estimator’s generalization ability with the help of this shared
and valuable knowledge from the source domain. Based on
this argument, the transfer learning (TL) concept attracted
increasing attention in SOC estimation tasks [19], which has
been successfully utilized in computer vision [20], natural
language processing [21], and multi-modal tasks [22]. For
DL industrial applications, especially when dealing with large-
scale and complex systems, the computational burden becomes
a signature challenge. TL method as an effective solution, al-
leviates the computational resources and time required to train
one model from scratch by leveraging knowledge transferred
from pre-trained models to new tasks. Xie et al. [23] utilized
the New England 39-bus system and the South Carolina 500-
bus system to validate that the TL process could provide
accurate results despite insufficient training data. Liu et al.
[24] employed the filed data collected from 50 wind turbines in
commercial wind farms to verify their proposed TL methods,
effectively decreasing the computational burden. Liu et al.
[25] proposed a TL method-based probabilistic wind power
forecasting method. The results indicated that the computation
burden was satisfied with the TL method for the practical wind
farms in China, in which the test datasets included the eight
wind farms in Ji Bei, China, with the wind power output data
collected every 15 min and covering 18 months. Hence, for
the large-scale system, by utilizing the knowledge accumulated
from source tasks, the TL method enhances model perfor-
mance on target tasks and relieves the computational burden,
which is particularly important in practical applications such
as the BMS. Li et al. [26] developed a deep TL method to
boost the training process of the terminal voltage estimation
for 53 electric buses. Zheng et al. [27] employed the TL
method to construct the state of health estimation model for
a large amount of the electric bus operational data. Therefore,
the application of the TL method to battery SOC estimation
has broad prospects.

As a typical TL method, a parameter transfer-based fine-
tuning strategy is relatively simple and popular. For the fine-
tuning approach in the batteries’ SOC estimation task, the pre-
trained model is first gained based on the large-scale source
data. This model’s parameters are loaded and serve as the ini-
tial status of the model for the target battery. Finally, the whole
or sectional parameters are retrained and updated based on a
few target data, including true SOC values. This strategy could
effectively avoid the model training from scratch. Recently,
some studies have exhibited the universality of fine-tuning in
battery SOC estimation. Vidal et al. [28] pre-trained the LSTM
model on one battery type, and then this pre-trained model as
a starting point, was retrained and fitted on another battery
type. For multi-task learning including SOC estimation, Che
et al. [29] combined a CNN-FC model with fine-tuning
technology and achieved high accuracy and computational
efficiency under different application scenarios by retraining
the specific task layers. Tian et al. [30] applied fine-tuning on
one layer of the pre-trained deep learning network (DNN) to
fit various scenarios, providing more accurate SOC estimation
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results at lower training costs. However, the SOC estimation
accuracy will be greatly compromised when the domain drift
is serious, causing the pre-trained model to not be suitable for
the target task by fine-tuning strategy. Besides, the quantity
of the target data is vital for the SOC estimation, and few-
shot target training data might let the fine-tuned model fall
into the overfitting. More troublingly, as a typical supervised
task, it is essential for SOC estimation based on the fine-
tuning strategy to gain precise ground truth of the target data.
However, obtaining abundant labeled target domain data is
costly and time-consuming in real-world scenarios.

The unsupervised domain adaptation (UDA) method is
commonly used in computer vision tasks, which has provided
new perspectives and solutions for addressing the scarcity of
labeled training data. Long et al. [31] constructed separate
image classification networks for the source and target do-
mains, assuming that the differences between the networks
of the source and target domains can be represented by a
residual function. They also used maximum mean discrepancy
(MMD) to align the output features of multiple network layers.
Saito et al. [32] proposed a domain adaptation method for
object detection based on strong local alignment and weak
global alignment. This method applies domain adaptation at
two levels: strong alignment at the lower levels of features
such as texture and color, and weak alignment at the higher
levels of features involving semantic information. Luo et al.
[33] combined adversarial learning and collaborative training
to propose a category-level adversarial network. They jointly
trained two semantic segmentation networks using data from
both the source and target domains to check if the semantic
segmentation categories across different domains are aligned.
Therefore, the UDA method is a potential and effective strat-
egy to handle the problems of fine-tuning approach in the
field of battery state estimation [34, 35], which could funda-
mentally minimize the marginal and conditional distribution
discrepancy and structure across domains and finally find the
domain-invariant feature [36, 37]. Shen et al. [38] proposed a
novel TL framework with Minimum Estimation Discrepancy
to tackle the challenges of distribution discrepancy and data
limitation in cross-domain SOC estimation under different
ambient temperatures. Bian et al. [39] presented a deep trans-
fer neural network with multi-scale MMD for cross-domain
SOC estimation, which could adaptively transfer the high-
level features with small-scale data from the target domain.
Shen et al. [40] constructed an adversarial domain adaptation
framework by adding a discriminator and prompting it to fail to
judge which domain the features come from via an adversarial
mechanism. The appending MMD constraint also decreases
the discrepancy of feature distribution across domains. Meng
et al. [41] developed an adversarial TL-based training frame-
work to extract the domain invariants across domains, guided
by minimizing Wasserstein distance, and results displayed
satisfactory SOC estimation performance and adaptation to
varying operating conditions and battery health degradation.
However, the transfer performances of an adversarial domain
adaptation with a distance metric constraint, remain to be
enhanced. This framework combined with other kinds of
constraints, such as the reconstructed constraint, is worthwhile

to be explored for the domain adaption study. Besides, the
neural network structure would affect the extraction efficiency
of domain-invariant features, and then decide the prediction
accuracy of the battery SOC. Nevertheless, the mainstream
neural networks are still the variant or combination of shallow
CNN or LSTM. Generally, the deep neural network structure
allows a higher level of abstraction than a shallow one, hence
the novel deep neural network structure has great potential to
be employed in the adversarial domain adaption. In a word,
this work proposes a novel TL framework, namely an adver-
sarial domain adaptation framework with the reconstruction
module and the multiple kernel MMD (MK-MMD) constraint,
donated as DARM, for predicting battery SOC under the low
requirement of unlabeled target data with changing conditions.
The main contributions of this work are summarised as fol-
lows:

1) A novel TL-based SOC estimation framework is pro-
posed to extract domain-invariant features and decrease
distribution discrepancy across domains. Based on this
TL framework, the source estimator trained at a spe-
cific working condition can be generalized to different
conditions even though the target domain is limited and
unlabeled.

2) A new SOC estimator consisting of depthwise separable
(DWS) 1D CNN, residual connection, Bi-directional
LSTM (BiLSTM), and attention mechanism, is pre-
sented to extract latent features and map the measured
data and SOC value more effectively.

3) By introducing the reconstructed decoder to form the
U-Net structure with the feature encoder, the raw input
could be reconstructed to force the feature encoder to
extract more valuable information. Meanwhile, an MK-
MMD module is added as an auxiliary module to relieve
the distribution discrepancy between domains owing to
dynamic working conditions.

4) The effectiveness, robustness, and generalization ability
of the proposed framework are verified by conducting
comprehensive comparisons to other popular methods
i.e., pre-trained model prediction and fine-tuning.

The rest of this article is structured as follows. Section II
gives the problem statement, methodology overview, and de-
tailed TL-based SOC estimation strategy. Section III presents
the comprehensive results of comparative studies and discus-
sions. Finally, the conclusions are drawn in Section IV.

II. METHODOLOGY

In this section, the problem formation is first introduced for
TL-based SOC estimation study in Section II-A. Secondly, an
overview of the main procedure is illustrated in Section II-B,
and the whole process could be divided into two stages: offline
training and online monitoring. Then, Section II-C illustrates
the network structure of the proposed DARM framework
with feature extraction, input reconstruction, SOC estimation,
adversarial learning, and feature alignment metric in detail.
Finally, the pre-trained and transferring total optimizations are
elaborated in Section II-D and Section II-E, respectively.
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A. Problem formation

In this work, the TL-based SOC estimation is studied in
the domain discrepancy scenario. The source domain Ds and
target domain Dt are first defined, and they contain large-
scale labeled data, and the limited-scale unlabeled data under
different working conditions, respectively. The source domain
is defined as Ds = {xs

i , y
s
i }

ms
i=1 with ms samples, where each

xs is a vector containing voltage, current, and temperature,
i.e., xs = [I, V, T ], and ys is the corresponding true SOC
value. The Dt is denoted as Dt = {Dt,train,Dt,test}, where
Dt,train represents the monitoring unlabeled target samples
for the UDA process, that is Dt,train = {xt,train

i }mt,train

i=1

with mt,train samples, and Dt,test represents the monitoring
labeled target samples for evaluating SOC prediction perfor-
mance, that is, Dt,test = {xt,test

i }mt,test

i=1 with mt,test samples.
However, the number of mt,train samples is much fewer than
ms samples, and thus it is hard to gain a satisfactorily well-
trained model for Dt,test, if the model is trained from scratch
based on Dt,train. Meanwhile, a domain D usually consists
of a feature space X and a probability distribution P(x),
so Ds and Dt are separately sampled from two marginal
probability distributions P(xs), and P(xt). Traditional DL
models assume that the Ds and Dt satisfy the IID in advances.
However, due to the diverse working conditions and battery
type, this assumption lowers the generalization of the related
DL models. In practice, there are inevitable discrepancies in
data distribution across domains, i.e., P(xs) ̸= P(xt), and
thus the pre-trained SOC estimator based on Ds cannot be
generalized to Dt.

The proposed framework is designed to build a SOC es-
timation model for Dt,test by taking full advantage of the
transferable knowledge from Ds and the few-shot unlabeled
data from Dt,train. Namely, this work aims to learn a function
h which approximates the online monitoring battery’s SOC
directly from the raw data, which can be expressed as,

yt ≈ h
(
xt
i

)
(1)

where xt
i and yti donate the raw data and ground truth for i-th

time step in target domain Dt.

B. Methodology overview

An overview of the main procedure of the proposed method
is displayed in Fig. 1, divided into two main stages, i.e.,
offline training and online monitoring. Firstly, the raw data
such as voltage, current, and temperature, are collected and
pre-processed before being used as the model input. Then,
for the offline training stage, the SOC estimator is trained by
Ds to gain the pre-trained SOC estimator. After the relative
parameters are initialized based on this pre-trained estimator,
the DARM framework is simultaneously trained by Ds and
Dt,train to realize the UDA for changing working conditions.
Finally, for an online monitoring stage, this offline estimator is
deployed in an online monitoring system, and online collected
Dt,test is pre-processed and then inputted into the adapted
estimator to infer the real-time SOC value.
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Fig. 1. The framework of the proposed methodology.
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Fig. 2. The framework of the proposed DARM.

C. Proposed framework

To achieve a superior domain-invariant representation for
SOC estimation for LIBs, this work proposes the DARM
framework as shown in Fig. 2, which consists of five modules:
two feature encoder (source domain: fs

e ; target domain: f t
e),

a reconstructed decoder fre, a SOC predictor fpred, a domain
discriminator fdis, and an MK-MMD module. This framework
consists of two steps, i.e., the pre-trained (grey arrowed line)
and transfer steps (black arrowed line). For the pre-trained
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step, the SOC estimator consists of a feature encoder for
source domain fs

e and a SOC predictor fpred, trained from
scratch to gain the SOC source estimator by reducing SOC
estimation loss Lpred. For the transfer step, the weights of fs

e

are used to initialize the feature encoder for the target domain
f t
e , and its weights and those of SOC predictor fpred are

frozen. An adversarial network would be formed by combining
two feature encoders (fs

e and f t
e) and a domain discriminator

fdis, in which the domain discriminator distinguishes whether
the extracted features are from the source domain or the target
domain. Via the constant adversarial training, the domain-
invariant feature (source domain: F s; target domain: F t,train)
can be obtained. Meanwhile, a domain distribution discrepancy
metric, i.e., MK-MMD, is adopted to minimize the distance
between the extracted features across domains and realize
the feature alignment during adversarial learning. Besides,
to ensure the extracted feature contains a more meaningful
representation of the input data, a reconstructed decoder fre
is added to be expected to reconstruct the input data based on
the extracted feature as closely as possible. For the transfer
learning step, the total loss Ltotal is a weighted sum of the
MMD loss Lmmd, reconstruction loss Lrec, and adversarial
training loss Ladv, which can be expressed as,

Ltotal = Ladv + α · Lrec + β · Lmmd (2)

where α and β are non-negative trade-off parameters. Firstly,
Section II-C1 introduces the structures of two feature encoder
(fs

e and f t
e), reconstructed decoder fre, and reconstruction loss

Lrec. Secondly, the detail of SOC predictor fpred and SOC
estimation loss Lpred are illustrated in Section II-C2. Then,
Section II-C3 introduces the domain discriminator fdis and
the adversarial training loss Ladv. Finally, the feature alignment
metric MMD and MMD loss Lmmd are elaborated in Section
II-C4

As the basement of the DARM, the SOC estimator consists
of the feature extractor fe and the SOC predictor fpred,
and its design inspiration comes from the structure of the
convolutional recurrent neural network (CRNN) [42] because
the multi-dimensional time-series input data xs possesses
a similar sequence feature representation as the scene text
recognition task. Hence, the feature extractor fe is constructed
by DWS 1D CNN and residual connection, which is employed
to extract a sequential feature representation F from a multi-
dimensional sequence, and its detailed structure will be dis-
cussed in Section II-C1. Then a sequence of feature vectors
extracted from the feature maps serves as the input for the
subsequent SOC predictor. Importantly, each feature vector
of a feature sequence is generated from left to right on the
feature maps by column. This means the i-th feature vector is
the concatenation of the i-th columns of all the maps, thus its
global temporal information is captured effectively. Besides,
the tensor shape of the extracted features is also suitable for the
input requirement of RNN by the map-to-sequence operation.
hence, based on the design concept of CRNN structure, the
SOC predictor fpred consists of the BiLSTM layers and
the attention mechanism, and its detailed structure will be
discussed in Section II-C2. Besides, the feature extractor fe

and SOC predictor fpred are mutually independent, which
benefits the subsequent transfer stage as shown in Fig. 2.
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Fig. 3. The network architecture of the U-Net structure, consisted of a feature
encoder and reconstructed decoder.

1) Feature extraction and input reconstruction: To guide
the feature encoder to learn valuable information and avoid
overfitting to few-shot unlabeled target data, a reconstruc-
tion constraint is introduced into this framework [43–45].
A reconstructed decoder decodes the features extracted by
the feature encoder, so a U-Net structure is employed to
restore the input data. In 2015, Ronneberger et al. [46]
proposed a novel CNN with U-shaped architecture, which is
particularly well-suited for biomedical image analysis, such
as the segmentation of cells or organs in medical images.
As shown in Fig. 3, the U-shaped architecture is built by a
feature encoder fe (dotted box on the left) as the gathering
of a contracting path and a bottleneck, and a reconstructed
decoder fre as an expansive path (dotted box on the right).
Each layer in the feature encoder is typically connected to
the corresponding layer in the reconstructed decoder, forming
cross-level skip connections (light yellow arrow), which could
enable the network to transmit richer information. Therefore,
forming a U-shaped configuration in this work ensures the
feature encoder can extract a more meaningful representation
from input data through multi-level feature extraction and
reconstruction. The feature extraction and data reconstruction
results can be calculated as follows.

{
F = fe (x)
x̂ = fre(x)

(3)

where x̂ and F denote the reconstructed data and the latent
feature corresponding to input samples x, respectively.

The feature encoder captures multi-scale features by numer-
ous convolution operations and reduces the spatial dimensions
of the input data by repeated max pooling down-sampling.
Finally, the latent feature F is outputted in the last convolution
operation of the feature encoder, which serves as the remaining
modules’ input including the reconstructed decoder. Table I
displays the detailed configuration of the feature encoder, and
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Fig. 4. The detail operation of depthwise 1D CNN and pointwise 1D CNN (a); The detail structure of the DWS 1D CNN (b), Resblock with identity shortcut
(c), and Resblock with projection shortcut (d).

TABLE I
DETAILS OF THE DARM.

Basic block Input size Output size

Feature encoder

DWS 1D CNN (3, 40) (8, 40)
DWS ResBlcok (8, 40) (8, 40)
Max Pooling 1D (8, 40) (8, 20)
DWS ResBlcok (8, 20) (16, 20)
DWS ResBlcok (16, 20) (16, 20)
Max Pooling 1D (16, 20) (16, 10)
DWS ResBlcok (16, 10) (32, 10)
DWS ResBlcok (32, 10) (32, 10)
Max Pooling 1D (32, 10) (32, 5)
DWS ResBlcok (32, 5) (64, 5)
DWS ResBlcok (64, 5) (64, 5)

Reconstructed decoder

Up sampling (64, 5) (64, 10)
DWS ResBlcok (96, 10) (32, 10)
DWS ResBlcok (32, 10) (32, 10)

Up sampling (32, 10) (32, 20)
DWS ResBlcok (48, 20) (16, 20)
DWS ResBlcok (16, 20) (16, 20)

Up sampling (16, 20) (16, 40)
DWS ResBlcok (24, 40) (8, 40)
DWS ResBlcok (8, 40) (8, 40)

1D CNN (8, 40) (3, 40)

SOC predictor

Reshape (64, 5) (5, 64)
BiLSTM (5, 64) (5, 128)

Attention layer (5, 128) 128
Linear 128 1

Domain discriminator

Reshape (64, 5) (5, 64)
BiLSTM (5, 64) (5, 128)

Attention layer (5, 128) 128
Linear 128 2

it mainly consists of DWS 1D CNN, and DWS residual block
(Resblock) in this work.

The DWS 1D CNN is an extension of DWS CNN for
processing 1D time-series data, which could maintain ef-
fectiveness while reducing the parameter amount and com-
putational complexity [47]. As shown in Fig. 4a, the main
idea of DWS 1D CNN is that the convolution is split into
depthwise convolution and pointwise convolution. The former
applies convolution separately to each input channel using the
corresponding kernel, and the latter uses a 1x1 convolutional
kernel to perform convolution on the output of each channel,
integrating the channel information. The detailed structure
of one DWS 1D CNN is shown in Fig. 4b, the activa-
tion function ReLU and batch normalization 1D BatchNorm

should be added to introduce nonlinear transformations and
enhance network stability and training speed. A Resblock is
a fundamental building unit in deep neural networks, used
to construct residual networks (ResNets) [48]. The design
of the Resblock aims to mitigate issues such as vanishing
and exploding gradients by introducing residual connections,
making the network more trainable. In this work, according to
whether the dimensions of the input and output are the same,
the residual connections of Resblock could be divided into two
types, i.e., identity shortcut (Fig. 4c) and projection shortcut
(Fig. 4d). For the main path of Resblock, there are two DWS
1D CNN blocks to extract features and learn representations.

In this work, the reconstructed decoder receives the low-
resolution features F from the feature encoder, and gradually
restores them to the original resolution of the input data
through up-sampling operations. As shown in Fig. 3 and
Table I, the U-Net exhibits a symmetric structure, with the
feature encoder and the reconstructed decoder having similar
hierarchical structures but opposite directions. Note that the
last output layer is a pointwise convolution, which is used to
adjust the channel dimensions to meet the requirements of the
network output. The reconstruction loss Lrec is calculated from
the standard mean squared error (MSE) between x̂ and x [45],

Lrec =
1

m

m∑
i=1

(x̂i − xi)
2 (4)

where xi and x̂i respectively correspond to the i-th sample and
its corresponding reconstruction result for total m samples.

2) SOC estimation: As shown in Fig. 2, because only
source data possess the ground truth during the pre-trained
step, the SOC predictor fpred is trained to map the source
latent features F s to the battery’s SOC. The latent features
serve as the SOC predictor’s inputs to gain the SOC estimation
value ŷs, which can be expressed as,

ŷs = fpred(F
s) (5)

The minimization SOC estimation loss function in pre-
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trained stage Lpred is formulated as the MSE of the supervised
SOC estimation of the source domain.

Lpred =
1

ms

ms∑
i=1

(ŷsi − ysi )
2 (6)

where ysi and ŷsi respectively correspond to the i-th sample
and its corresponding estimation result for total ms sample.
The detailed structure of the SOC predictor fpred will be
introduced as follows.
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Fig. 5. The network architecture of the SOC predictor.

The BiLSTM is a variant of RNN designed to better capture
and understand long-term dependencies in sequential data by
processing input sequences in both forward and backward di-
rections simultaneously [49]. Specifically, BiLSTM consists of
two directions of LSTM, one processing the input sequence in
the forward direction and the other in the backward direction.
This allows the network to consider past and future informa-
tion at each time step, aiding in capturing patterns and depen-
dencies within the sequence. Meanwhile, to comprehensively
capture contextual information and focus on different parts of
the input sequence, the output of BiLSTM is then connected to
the attention mechanism as shown in Fig. 5. The introduction
of the attention mechanism could dynamically assign different
weights to different parts of the input sequence, allowing the
model to focus more intently on important information [50].
Specifically, the attention mechanism calculates weights for
each input position, which are then used for the weighted
summation of the BiLSTM outputs, and the final sequence
representation could be gained. Note that there is a data shape
processing operation before the latent feature is fed into the
BiLSTM layer, which could convert feature maps obtained
from the feature encoder into a sequence format for input into
subsequent BiLSTM layers.

3) Adversarial learning: In the as-proposed framework,
adversarial learning aims to minimize the distributional dis-
crepancy between the source domain and the target domain by

introducing adversarial loss Ladv. This process could achieve
feature alignment across domains and thus facilitate better
model generalization ability on the target domain [51, 52].
Specifically, an adversarial network consists of two compo-
nents: feature encoder fe and domain discriminator fdis. Fea-
ture encoder is responsible for offering the common features
for domain discriminator. In contrast, the domain discriminator
attempts to classify whether the extracted features originate
from the source domain or the target domain. A game-
like scenario is established between the feature encoder and
the domain discriminator in the adversarial training process.
The feature encoder’s objective is to extract indistinguishable
latent features for the domain discriminator, and the domain
discriminator’s goal is to accurately distinguish whether the
input features originate from the source domain or the target
domain. Thus, the optimization objective of the adversarial
training between the domain discriminator and the feature
encoder can be calculated as follows [52]:

min
ft
e

max
fdis
Ladv = −Exs∈Ds log [fdis (f

s
e (x

s))]−

Ext∈Dt,train log
[
1− fdis

(
f t
e

(
xt
))] (7)

As shown in Table I, there is nearly no difference between
the network structure of the SOC predictor and domain dis-
criminator, except the last output layer, because the output of
the domain discriminator is a binary classification problem.

4) Feature alignment metric: There are some defects in
adversarial learning. Typically, even though the domain dis-
criminator is successfully confused, the learned feature rep-
resentation might be domain-invariant [38]. To deal with this
problem, as a typical unsupervised feature alignment metric,
an MK-MMD module is introduced into this framework to
quantify the mean discrepancy between the extracted features
from different domains. By minimizing the MK-MMD loss
Lmmd, the model is compelled to find a feature representation
that is insensitive to domain differences [53]. Thus, this mod-
ule encourages the model to learn domain-invariant features
and helps improve the model’s generalization performance on
the target domain. Specifically, Lmmd is the squared distance of
F s and F t,train embedded in the reproducible kernel Hilbert
space (RKHS), which can be expressed as [54],

Lmmd = ∥ 1

ms

ms∑
i=1

Φ(xs
i )−

1

mt,train

mt,train∑
j=1

Φ(xt,train
j )∥2H

=
1

m2
s

ms∑
i=1

ms∑
j=1

K
(
fs
i , f

s
j

)
+

1

m2
t

mt,train∑
i=1

mt,train∑
j=1

K
(
f t,train
i , f t,train

j

)
−

2

msmt,train

ms∑
i=1

mt∑
j=1

K
(
fs
i , f

t,train
j

)
(8)

where ∥∥2H is the two-norm operation in RKHS, Φ(·) is the
nonlinear mapping function from raw data space to RKHS.
fs
i and f t,train

i are the subspace’s feature learned from the xs
i

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2024.3483973

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 26,2024 at 10:56:30 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Pseudo Code of the Pre-trained Process

Input: Ds = {xs
i , y

s
i }

ms
i=1: Labeled source training data;

epochpre
thresh: Pre-trained epochs

Output: fs
e : Source feature encoder, fpred: SOC predictor

1: for epoch ← 0 to epochpre
thresh do

2: Estimate SOC ŷs using fs
e and fpred modules (Eq.3

and Eq.5);
3: Compute the estimation loss Lpred (Eq.6);
4: Update fs

e and fpred (Eq.11);
5: epoch← epoch+ 1;
6: end for

and xt,train
i , respectively. K donates the combination of the

Gaussian radial basis function (RBF) kernels as follows [55]:

K(xi, yj) =

Nk∑
n=1

kn(xi, yj) (9)

where kn denotes the n-th RBF kernel and then it can be
expressed as,

kn(xi, yj) = exp(−∥xi − yj∥2/2γ2
n) (10)

where γ2
n donates bandwidth parameter.

D. Pre-trained loss optimization

The learning object of the pre-trained step is to gain a well-
trained SOC source estimator. Hence, by minimizing Lpred,
the weight parameters of the SOC source estimator can be
updated, and the detailed model parameter update process is
displayed as follows:

θfs
e
= θfs

e
− ηpt ·

∂Lpred

∂θfs
e

θfpred = θfpred − ηpt ·
∂Lpred

∂θfpred

(11)

where θfs
e

, and θfpred represent the parameters of the feature
encoder for source domain, and SOC predictor, respectively;
ηpt represents the learning rate during the pre-trained step.
When the pre-trained step is finished, the feature encoder for
source domain fs

e is utilized in the next transfer step, and the
fpred is transferred to the SOC online estimation process. The
pseudo code of the pre-trained process is shown in Algorithm
1.

E. Transferring total loss optimization

The optimization objective Ltotal of the DARM framework
consists of the adversarial loss Ladv, the reconstruction loss
Lrec, and the MK-MMD loss Lmmd. The overall loss function
is formulated as,

Algorithm 2 Pseudo Code of the Transfer Process

Input: Ds = {xs
i , y

s
i }

ms
i=1: Labeled source training data;

Dt,train = {xt,train
i }mt,train

i=1 : Unlabeled target training
data; epochtf

thresh: Transfer epochs; fs
e : Source feature

encoder from the pre-trained stage; fpred: SOC predictor
from the pre-trained stage

Output: fT : Transferred target model
1: Initialize target feature extractor f t

e with pre-trained source
feature extractor fs

e

2: for epoch ← 0 to epochtf
thresh do

3: Extract domain-invariant feature (F s and F t,train) from
Ds and Dt,train (Eq.3);

4: Compute the MMD loss Lmmd (Eq.8);
5: Compute the adversarial training loss Ladv (Eq.7);
6: Compute the reconstruction loss Lrec (Eq.4);
7: Compute the total loss Lrec (Eq.2);
8: Update f t

e , fre, and fdis (Eq.12);
9: epoch← epoch+ 1;

10: end for
11: Combine target feature extractor f t

e with pre-trained SOC
predictor fpred to gain transferred target model fT



θft
e
= θft

e
− ηtf ·

(
∂Ladv

∂θft
e

+ α · ∂Lrec

∂θft
e

+ β · ∂Lmmd

∂θft
e

)

θfre = θfre − ηtf ·
∂Lrec

∂θfre

θfdis = θfdis − ηtf ·
∂Ladv

∂θfdis
(12)

where θft
e
, θfre , and θfdis represent the parameters of the fea-

ture encoder for the target domain, reconstructed decoder, and
domain discriminator, respectively; ηtf denotes the learning
rate during the TL process. When the TL step is finished, the
feature encoder for target domain f t

e and the well-trained SOC
predictor in pre-trained step fpred are combined for the online
battery’s SOC estimation. The pseudo code of the pre-trained
process is shown in Algorithm 2.

III. EXPERIMENTAL RESULTS

A. Dataset description

To evaluate the battery SOC estimation performance of
the DARM framework at real-world working conditions and
compare this approach with others, the Panasonic 18650PF
dataset collected by the University of Wisconsin-Madison
[56], is utilized to train and validate the proposed model
architecture. In this dataset, a brand-new Panasonic 18650PF
cell is tested in the thermal chamber with a Digatron firing
circuits universal battery tester channel, and other detailed
description is displayed in Table II. The Panasonic 18650PF
dataset is a benchmark dataset in the community. In this
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TABLE II
THE SPECIFICATIONS OF THE PANASONIC 18650PF DATASET.

Characteristics Values
Cathode material LiNiCoAlO2
Anode material Graphite
Nominal voltage 3.6 V

Minimum/typical capacity 2.75 Ah / 2.9 Ah
Min/max voltage 2.5 V / 4.2 V

Mass/energy storage 48 g / 9.9 Wh
Charge temperature 10 ◦C to 45 ◦C

Discharge temperature -20 ◦C to 60 ◦C
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Fig. 6. Voltage (a), current (b), temperature (c), and SOC value (d) of LA92
drive cycle in raw measured at five discrete ambient temperatures and two
increasing ambient temperatures.

dataset, a series of power profiles (Cycle1, Cycle2, Cycle3,
Cycle4, US06, HWFET, UDDS, LA92, and neural network
(NN)) were tested repeatedly at multiple pre-set fixed ambient
temperatures (25 ◦C, 10 ◦C, 0 ◦C, -10 ◦C, -20 ◦C), and
increasing ambient temperatures (starting at -20 ◦C and 10
◦C), which is donated as S -20 ◦C and S 10 ◦C, respectively.
Cycles 1-4 are a random mix of US06, HWFET, UDDS, LA92,
and NN drive cycles. NN drive cycle consists of portions of the
US06 and LA92 drive cycles. The drive cycle power profile
is calculated for an electric Ford F-150 truck with a 35-kWh
battery pack scaled for the single cell.

The dataset mainly includes timestamp, voltage, current,
ampere-hours, and cell temperature, recorded at a 10 Hz
sampling rate. Based on the previous investigation [57, 58],
the collected data were resampled at the sampling rate (1 Hz)
commonly employed by BMS. Fig. 6 displays the collected
parameters and SOC values of the LA92 driving cycle tested
at five discrete temperatures.

B. Implementation detail

All approaches are trained and tested for subsequent exper-
iments with datasets resampled at 1 Hz. Voltage, current, and
cell temperature input are provided within a window of 40
time steps. To facilitate the model’s training, the Min-Max
normalization transforms these measurements to the range
[0, 1]. The proposed SOC estimator is compared with the
commonly used CNN, LSTM, and CNN-LSTM models, and
their parameter numbers are set to be close to that of the
proposed model for fairness. Adam optimizer is employed

TABLE III
EXPERIMENTAL HYPERPARAMETERS.

Parameters Value Parameters Value
α 10 Optimizer Adam

β 1 Learning rate for
pre-trained step 0.001

Pre-trained epochs 500 Learning rate for
transfer step 0.0001

Transfer epochs 100 Batch size 256
Early stop patience 20

in the training and TL process. Via the grid-search method,
the trade-off parameter in Eq.12 can be quickly obtained,
and other hyperparameters values are shown in Table III. All
approaches are trained and tested using PyTorch 1.11.0 with
NVIDIA RTX 3080 GPU. We demonstrate the quantitative
validation of the proposed model using the following two well-
known metrics: root mean square error (RMSE) and mean
absolute error (MAE), which can be expressed as,

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2

MAE =
1

n

n∑
i=1

|ŷi − yi|

(13)

where n refers to the number of input samples; yi and ŷi are
the real value and estimated SOC value, respectively.

C. SOC estimation performance of the source estimator

To evaluate the SOC estimation performance of the pre-
trained estimator at specific ambient temperature, the measured
data (including voltage, current, temperature, and capacity)
on cycles 1-4 at 25 ◦C serve as the training dataset for
the pre-trained step, and those of the remaining drive cycle
profiles at 25 ◦C serve as the test dataset. Fig. 7 and Table
IV display the SOC estimation results (LA92, UDSS, US06,
HWFET, and NN at 25 ◦C) based on the proposed source
estimator and the other commonly used models. Compared
with the other models, the prediction value from the proposed
estimator is closer to the ground truth at the various dynamic
drive cycles, and the proposed SOC estimator exhibits better
SOC estimation performance at the same ambient temperature.
Therefore, the proposed SOC estimator could extract the latent
features of the source data effectively, which has a potential
generalization ability for the online battery at different ambient
temperatures.

D. Transferring SOC estimator to different working conditions
via the DARM framework

The ambient temperature has a significant influence on the
SOC estimation. An increase in ambient temperature promotes
the chemical reaction rate on the electrodes, while lower
temperatures slow down the reaction rate. This leads to faster
charging and discharging of the battery at higher temperatures
and slower reactions at lower temperatures. Hence there is
domain drift across various temperatures for SOC estimation,
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Fig. 7. SOC estimation results from various models at 25 ◦C. (a) LA92, (b) UDSS, (c) US06, (d) HWFET, and (e) NN.

TABLE IV
SOC ESTIMATION RESULTS FROM THE VARIOUS MODELS AT 25 ◦C.

Models RMSE / % MAE / %
LA92 UDSS US06 HWFET NN LA92 UDSS US06 HWFET NN

CNN 2.55 1.76 1.72 2.02 2.43 2.16 1.52 1.40 1.71 1.85
LSTM 1.64 2.30 2.06 3.81 1.34 1.28 2.00 1.75 3.34 1.07

CNN-LSTM 1.56 1.57 1.84 2.61 1.49 1.14 1.24 1.46 2.08 1.11
The proposed

source estimator 1.33 1.00 1.24 1.85 1.22 1.02 0.74 0.97 1.37 0.94

and the TL strategy needs to be carried out to eliminate the
distributional difference across domains. To evaluate the TL
performance of the DARM framework, the pre-trained SOC
estimator at 25 ◦C is transferred to the other data at different
temperatures (10 ◦C, 0 ◦C, -10 ◦C, and -20 ◦C). During the TL
process, the data of Cycle 1 (including voltage, current, and
temperature, except capacity) at target ambient temperature
serve as the Dt,train, and the data of five driving cycles
(including LA92, UDSS, US06, HWFET, and NN) at target
ambient temperature serve as the Dt,test.

To better display the UDA performance of the proposed
DARM framework, the fine-tuning approach as a typical
supervised TL strategy is utilized to be a comparison, in which
the transferred pre-trained model is the SOC source estimator
at 25 ◦C and all the modules and the hyperparameters are
similar to the proposed framework for fairness. Taking the
LA92 power profile as an example, Fig. 8 displays SOC
transferring results at different target temperatures, and the
metrics of all power profiles are shown in Table V. Meanwhile,
the direct prediction performance of the source estimator is
added to reflect the improvement of SOC estimation accuracy
with the help of the TL process.

Compared with the SOC estimation results of the TL strate-
gies, those of the source estimator without TL are further away
from the ground truth at each target temperature, indicating
the source estimator is unsuitable to be applied directly to the

SOC estimation at different temperatures due to domain drift.
Meanwhile, this shift becomes even more violent when am-
bient temperature gradually decreases, implying the gradually
increasing distribution differences between the source domain
and the target domain; Although the ground truth of the Cycle
1 data is known for the fine-tuning strategy, its SOC estimation
performance is inferior than the DARM framework. On the one
hand, there might be an overfitting problem in that the model
too overly focuses on the target domain’s specific features to
decrease its generalization ability. On the other hand, there
are still unmitigable domain drift problems due to the large
distribution discrepancy across domains; Although the utilized
Cycle 1 data is without SOC true values, the estimation
results of the proposed framework are closer to the ground
truth. Almost the RMSE and MAE are controlled under 2.0%
and 1.5% for fixed temperatures, respectively, and the best
experimental result (RMSE: 1.33%, bold in Table V) could be
gained when transferring from 25 ◦C to 10 ◦C. Meanwhile,
the errors have slight increases for the increasing ambient
temperature, the best experimental result (RMSE: 2.57%, bold
in Table V) could also be found when transferring from 25
◦C to S -20 ◦C. This result implies the proposed DARM
framework could transfer effectively source SOC estimator to
the unlabeled and limited target domain by extracting domain-
invariant features and decreasing the distances between the
different features.
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Fig. 8. Taking the LA92 power profile as an example, the SOC estimation results of the source estimator, the fine-tuning strategy, and the DARM framework
at different ambient temperatures. (a) 10 ◦C, (b) 0 ◦C, (c) -10 ◦C, (d) -20 ◦C, (e) S -20 ◦C, and (e) S 10 ◦C.

TABLE V
SOC ESTIMATION RESULTS OF THE SOURCE ESTIMATOR, THE FINE-TUNING STRATEGY, AND THE DARM FRAMEWORK AT DIFFERENT TARGET

TEMPERATURES.

RMSE / % MAE/ %Target
temperatures Methods LA92 UDSS US06 HWFET NN

Average
RMSE / % LA92 UDSS US06 HWFET NN

Average
MAE / %

Source estimator 5.20 6.26 3.61 8.95 3.77 5.56 3.97 4.65 2.89 7.84 2.94 4.46
Fine-tuning 2.25 2.61 1.26 1.86 1.76 1.95 1.70 1.96 0.98 1.44 1.34 1.4810 ◦C

DARM 1.42 1.34 1.27 1.51 1.12 1.33 1.05 0.97 0.99 1.12 0.81 0.99
Source estimator 12.21 9.13 15.53 14.15 11.95 12.59 10.30 7.08 14.48 12.98 10.27 11.02

Fine-tuning 2.99 3.18 3.36 2.59 3.79 3.18 2.50 2.85 2.80 2.20 3.32 2.730 ◦C
DARM 1.68 1.29 1.46 1.59 1.33 1.47 1.28 1.03 1.15 1.18 1.03 1.13

Source estimator 18.75 15.25 28.54 22.77 18.95 20.85 15.66 12.08 25.63 20.38 15.56 17.86
Fine-tuning 3.23 3.38 3.53 3.08 3.77 3.40 2.52 2.73 2.82 2.60 3.12 2.76-10 ◦C

DARM 1.78 1.49 1.42 1.66 1.73 1.62 1.41 1.21 1.14 1.33 1.42 1.30
Source estimator 28.57 23.82 38.78 35.99 27.64 30.96 23.68 19.79 33.13 32.17 21.83 26.12

Fine-tuning 4.66 4.38 3.02 4.95 3.26 4.05 4.00 3.83 2.52 4.22 2.63 3.44-20 ◦C
DARM 2.04 1.59 1.60 1.79 1.78 1.76 1.58 1.27 1.25 1.34 1.36 1.36

Source estimator 12.43 18.14 23.16 20.23 19.44 18.68 10.47 16.91 18.81 16.06 14.99 15.45
Fine-tuning 3.77 3.82 3.53 3.30 4.58 3.80 2.84 3.04 2.66 2.66 3.38 2.92S -20 ◦C

DARM 2.82 2.17 2.23 2.48 3.15 2.57 2.12 1.79 1.63 1.63 2.17 1.93
Source estimator 20.43 19.61 25.27 17.08 -a 20.60 16.02 15.28 20.77 10.11 - 15.54

Fine-tuning 4.54 4.62 3.96 3.91 - 4.26 4.14 4.17 3.61 3.39 - 3.83S 10 ◦C
DARM 3.29 3.11 3.28 2.87 - 3.14 2.98 2.85 3.02 2.32 - 2.79

a the relative raw data is not found.

E. Ablation experiments

To study each module’s effect on the DARM framework
in terms of transferring performance, the ablation experiments
are carried out by gradually appending each module’s loss
function into the total loss function. As shown in Table III-E,
the average RMSE gradually decreases with the addition of
modules into the framework, especially when all modules
are added to the proposed framework. This result indicates
that every module effectively enhances the SOC estimation
accuracy during the TL process. The model gradually finds the
optimal solution during the TL process through the constraints
of multiple loss functions.

F. Visualization of extracted feature distributions

The source estimator automatically extracts features con-
taining meaningful information about battery SOC from the
input data (including voltage, current, and temperature), and
maps them to the battery SOC. However, using the extracted
feature from the feature encoder directly to explain the estima-
tion mechanism is hard because of the high-dimensional fea-
ture space. A visual analysis of the original data and extracted
features is conducted to investigate the domain adaptation
effect of the DARM framework on feature extraction. The
high-level feature extracted feature from the feature encoder
is gained by principal component analysis (PCA), where the
first three principal components (PCs 1 to 3) are employed.
The kernel density estimation (KDE) [59] is used to calculate
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Fig. 9. Visualizations of the selected two domains (Ds, 25 ◦C; Dt, -20 ◦C) and extracted feature distributions using PCA: Data distributions across domain
(a, voltage; b, current; c, temperature); Extracted feature distributions via the source estimator (d, PC1; e, PC2; f, PC3), the fine-tuning (g, PC1; h, PC2; i,
PC3), and the DARM framework (j, PC1; k, PC2; l, PC3), respectively.

TABLE VI
RESULTS OF ABLATION EXPERIMENTS. GRADUALLY
APPENDING EACH LOSS FUNCTION TO THE DARM

FRAMEWORK TO TESTIFY EACH MODULE’S EFFECT.

Transferring direction
Average RMSE of different

module combination / %
D 1a D 2b D 3c D 4d

25 ◦C to 10 ◦C 1.90 1.57 1.63 1.33
25 ◦C to 0 ◦C 2.15 2.06 1.84 1.47

25 ◦C to -10 ◦C 2.23 1.92 1.89 1.62
25 ◦C to -20 ◦C 2.70 2.40 2.09 1.76

a the DARM framework without reconstruction and MK-
MMD modules.

b the DARM framework without MK-MMD modules.
c the DARM framework without reconstruction modules.
d the DARM framework.

the probability density distribution of the original input and
the extracted features based on different methods (source
estimator, fine-tuning, and DARM framework), as shown in
Fig. 9.

Figs. 9a to c display a significant difference in the voltage,
current, and temperature data across domains because the
different ambient temperatures lead to distinct electrochemical
reaction rates and inner resistances in a cell. The domain dis-
crepancy would cause a huge challenge for directly applying
source domain knowledge to the target domain. As shown in

Figs. 9d to f, there is a remarkable domain discrepancy of
extracted features via source estimator, so the TL strategy
is necessary. As shown in Figs. 9g to l, all the feature
distribution discrepancies via the fine-tuning and the DARM
framework across domains of PCs 1 to 3 have been improved.
Importantly, the proposed framework exhibits the minimum
domain discrepancy, implying this framework could ensure the
feature encoder extracts the domain-invariant features more
effectively. Therefore, the superior SOC estimation perfor-
mance for different target temperatures could be gained via
the proposed framework, which is the same as Section III-D
results.

G. Generalization validation

TABLE VII
TRANSFER RESULTS FROM THE WISCONSIN-MADISON DATASETS TO THE

MCMASTER DATASETS.

Target temperatures / ◦C Average RMSE / % Average MAE / %
40 1.66 1.38
25 1.45 1.07
10 1.60 1.22
0 1.62 1.33

-10 1.74 1.37
-20 1.96 1.47
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TABLE VIII
COMPARISON WITH OTHER METHODS OF SOC DOMAIN ADAPTATION RESULTS.

Methods TL strategies Validation datasets Transfer settings Best results Computation complexities
during transfer process

RMSE
/ %

MAE
/ %

Transfer
time

Estimation
time Parameters

DCNN-TL[61] Supervised NASA datasetsa Cross battery 1.36 -b 12.29 s 5 ms 0.03 M

DTNN[39] Supervised Wisconsin-Madison,
A123 and INR datasetsc Cross battery 1.54 1.21 411.54 s 2 ms -

SFTTN[38] Unsupervised Wisconsin-Madison, A123,
and McMaster datasets

Cross fixed temperature 3.38 2.67 38.12 s/epoch 2.35 ms 0.95 MCross changing temperature 6.46 4.36
Cross battery 2.06 1.98

WD-TL[41] Unsupervised Wisconsin-Madison
datasets Cross fixed temperature 1.46 1.18 603.68 s 5.63 ms 0.06 M

TATN[40] Unsupervised Wisconsin-Madison
datasets Cross fixed temperature 1.50 1.15 - - -

The proposed
framework Unsupervised Wisconsin-Madison and

McMaster datasets

Cross fixed temperature 1.33 0.99 390.51 s 11.08 ms 0.19 MCross changing temperature 2.57 1.87
Cross battery 1.45 1.07

a NASA datasets obtains from the NASA.
b the symbol ”-” denotes ”unavailable”.
c A123 and INR datasets obtain from the Center for Advanced Life Cycle Engineering at the University of Maryland.

Because the differences in internal properties between the
different types of batteries also would lead to the domain shift
when applying the SOC source estimator, the experimental
LIBs datasets coming from McMaster University [60] are
used in this study. A brand-new 3Ah LG 18650HG2 battery
in which cathodic and anode materials are LiNiMnCoO2
and graphite respectively, is tested in a Digatron battery
tester, and the ambient temperature is controlled by a thermal
chamber. These datasets contain a series of power profiles
(US06, HWFET, UDDS, LA92, and Mixed 1-8) were tested
repeatedly at multiple preset temperatures (40 ◦C, 25 ◦C,
10 ◦C, 0 ◦C, -10 ◦C, and -20 ◦C), in which Mixed 1 to 8
drive cycles are randomly generated from the standard drive
cycles. To display the adaptability and effectiveness of the
framework, the SOC source estimator from the Wisconsin-
Madison datasets is transferred to the McMaster datasets, in
which the source and target domains during the transfer stage
are Cycle 1-4 of the Wisconsin-Madison datasets at 25 ◦C,
and Mixed 1-8 of the McMaster datasets at 6 types of ambient
temperatures, respectively. The cross-battery transfer result is
displayed in Table VII, it is clear that the DARM framework
exhibits excellent performance for all the transferred tasks
with an average RMSE error of no more than 2%, and the
best experimental result (RMSE: 1.45%, bold in Table VII)
could be gained when transferring between the 25 ◦C of the
two datasets. This result indicates that the proposed UDA
framework possesses outstanding generalization ability, and
it would decrease the data demand of the source domain and
thus avoid the training process of the source estimator from
scratch.

H. Comparison with other methods

Table VIII summarizes the comparison between the trans-
fer results and computation complexities obtained with the
proposed method and other transfer methods. In the field of
temperature and battery-type domains, the proposed frame-
work could realize outstanding transfer results compared with
other state-of-the-art supervised and unsupervised methods.

TABLE IX
COMPARISON WITH OTHER METHODS OF SOC ESTIMATION IN EV

APPLICATIONS.

Average resultsMethods RMSE / % MAE / %
Gaussian process regression[62] -a 3.8

DNN[63] 3.68 9.31
Unscented Kalman

filtering-based method[64] ≤4 -

The proposed method ≤3.14 ≤2.79
a the symbol ”-” denotes ”unavailable”.

Meanwhile, the training parameter amounts during the transfer
process are relatively small, and the transfer and estimation
time are within a receptible range by contrast. Therefore, the
proposed framework has a scalability advantage on the premise
of ensuring accuracy. As shown in Table IX, the proposed
method also exhibits excellent SOC estimation performances
compared with the other common methods for SOC estimation
in electric vehicle (EV) applications. Therefore, this method
can potentially be applied to EV SOC estimation.

IV. CONCLUSION

This work proposes a novel TL-based DARM framework
for LIBs SOC estimation to handle the domain shift problem
caused by changing conditions. A new SOC estimator con-
sisting of DWS 1D CNN, residual connection, BiLSTM, and
attention mechanism, is constructed and exhibits the superior
SOC estimation performance for offline source dataset com-
pared with commonly used models. An adversarial framework
introduces a domain discriminator to extract the domain-
invariant features. Moreover, a reconstruction constraint is
developed to ensure the feature encoder extracts more valuable
information, and the reconstructed decoder and the feature
encoder also form a U-shaped structure by skip connection. An
MK-MMD module, a typical unsupervised feature alignment
metric, is also introduced to decrease the distribution dis-
crepancy of extracted features across domains. Experimental
results demonstrate that the best cross-domain RMSE of the
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proposed transfer framework are 1.33%, 2.57 %, and 1.45 %
for fixed ambient temperatures, changing ambient tempera-
tures, and changing battery type, respectively, indicating that
the DARM framework can achieve outstanding cross-domain
estimation performances compared with the other state-of-the-
art transfer methods. Meanwhile, the ablation experiment im-
plies that all the constraints of this framework have a positive
effect on enhancing the transferring performance of the source
estimator. The KDE result further testifies to this framework’s
effective domain-invariant feature extraction ability. Therefore,
this framework exhibits a potential application for the SOC
estimation of online LIBs under changing conditions.

However, there are still some limitations of this work or
challenges for using in the real world as follows: First, in
more cases, the batteries provide power in the form of battery
packs, such as electric vehicles and energy storage power
stations. That means the collected data will be dirtier and
more complex than the used data in this study; Second, the
collected temperature of one pack is the temperature in a
certain region, not the temperature of the specific cell, thus
the temperature domain is difficult to classify. Besides, the
deficiency of temperature parameters might have a negative
influence on the efficiencies and scalability of the transfer
framework; Third, when the multi-variable coupled condition
(such as working condition, aging state, ambient temperature,
etc.) changes simultaneously and dynamically in practice, the
domain adaptation processes proceed all the time. It will chal-
lenge the computational ability and data collection. Therefore,
for these limitations and challenges, we will continue to study
the efficiency and scalability of this transfer framework for the
practical battery pack. Meanwhile, the domain shift caused
by multi-variable coupled conditions will be studied for the
transferring ability of the proposed framework.

In the future, the efficiency and scalability of the proposed
transfer framework for the practical battery packs will be
studied. Meanwhile, the domain shift caused by multi-variable
coupled conditions will also be investigated for the transferring
ability of the proposed framework.
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