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A B S T R A C T

Accurate remaining useful life (RUL) estimation is crucial for the normal and safe operations of lithium-ion
batteries (LIBs). Traditionally, every cycle’s maximum discharging capacity should be measured and then serve
as a model input to predict iteratively the degradation trajectory. Unfortunately, full discharge stages are not
always present in practice. Herein, this study presents a hybrid approach consisting of signal decomposition
and deep learning to overcome the above limitations. Firstly, for the collected discharging fragments, the
convolutional neural networks model predicts every cycle’s maximum discharging capacity which combines
to form a predicted capacity degradation curve before the start point of RUL prediction. Then, via empirical
mode decomposition, this curve’s global degradation trend is extracted and serves as the subsequent model
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input. Finally, the entire degradation trajectory and RUL value could be inferred based on the well-trained
gated recurrent unit-fully connected model. The superior prediction performance of the proposed method is
verified on two open battery datasets. All the estimation errors can be maintained within 7.0% based on the
discharging fragment of the ∼20% capacity ratio ranges from 40% to 60% of the degradation data. This result
illustrates the promising accuracy and robustness of the developed LIBs RUL estimation method, especially for
not full discharge process in practice.
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1. Introduction

Lithium-ion batteries (LIBs) are excellent rechargeable power sources
powering our daily lives, including drones, mobile phones, electric
vehicles, and satellites, due to their lightweight, high energy and power
density, wide working range, and fast charging rate [1]. However,
the aging problem related to the capacity degradation of LIBs may
cause decreased performance and catastrophic accidents in severe
cases. Therefore, people need to establish a battery management system
(BMS) to accurately and robustly monitor running status, which is
mainly divided into three indicators: remaining useful life (RUL) [2],
state of charge (SOC) [3], and state of health (SOH) [4]. The RUL
of a battery is defined as the number of remaining charge–discharge
cycles before its running status reaches the failure threshold, which
could help the user to develop a feasible plan to optimize the batteries’
working status, so the LIBs’ RUL prediction attracts more and more
attention [5]. However, the highly complicated and nonlinear elec-
trochemical process, and inconstant degradation mechanism of LIBs,
hinder the enhancement of the prediction performance of BMS [6].

To meet these challenges, many model-based and data-driven ap-
proaches have been developed [7,8]. Typically, model-based approaches
could be divided into two main categories, i.e., the mechanism model
and the mathematical model [9]. The mechanism model either analyzes
physical and chemical reactions to describe the capacity aging process
of LIBs (such as the equivalent circuit model), or fits charges transfer
and mass transfer processes by the partial differential equations [10].
Although the high prediction accuracy could be realized, the expensive
computing cost and intricate mechanisms still obstacles their applica-
tions. On the other hand, the mathematical model, such as the empirical
model, employs filtering algorithms to provide a non-destructive means
of characterizing batteries to achieve RUL and SOH prediction [11].
However, the prediction accuracy of mathematical approaches is sensi-
tive to external environmental conditions and model parameters [12].
Therefore, data-driven approaches have attracted attention owing to
their strong robustness and adaptability to the nonlinear capacity
degradation phenomenon of LIBs.

Data-driven approaches such as the support vector regression (SVR)
[13], gaussian process regression (GPR) [14], and relevance vector
machine (RVM) [15], have been developed to use information from
historical time-series battery dataset (the changes of battery’s voltage,
current, capacity and surface temperature) to predict its future perfor-
mance, i.e., RUL and SOH. For example, Yang et al. [16] proposed an
RUL prediction method for LIBs based on an integration of ensemble
empirical mode decomposition (EEMD), gray wolf optimization (GWO),
and SVR to predict global capacity degradation and capacity regen-
eration in battery capacity time series. Zhang et al. [17] decomposed
battery capacity data by variational modal decomposition (VMD) and
applied dual GPR models to predict the SOH of LIBs. Chen et al. [18]
proposed a hybrid algorithm that combines the broad learning system
(BLS) with the RVM to predict the LIBs RUL, suitable for the time series
field with noise and few data features. However, prediction accuracy
of these data-driven approaches still do not meet the need of all life
cycle stages [19]. Moreover, appropriate feature engineering is also
challenging to implement in general machine learning algorithms [20].

Artificial neural network (ANN), could potentially resolve the above
issues because the high-level and underlying information from large-
scale dataset can be extracted [21]. For instance, the recurrent neural
network (RNN) and its derivatives have shown good performance in
2

predicting SOH and RUL, which are typical task of temporal sequence.
Li et al. [22] employed long short-term memory (LSTM) for SOH and
RUL estimation of LIBs, which avoided the gradient vanishing problem
of the traditional RNN. Lu et al. [23] further utilized gated recurrent
unit (GRU), a simplified LSTM, to constitute the framework to predict
the battery capacity degradation trajectories under both fixed and
random battery operating conditions. Tong et al. [24] put forward
a hybrid approach for RUL prediction, which was composed with
adaptive dropout LSTM and Monte Carlo Simulation, and this approach
exhibited relatively low data requirement and good prediction accu-
racy. However, the desired predicted accuracy of the aforementioned
RUL prediction heavily depends on the precondition, that the every
cycle’s maximum discharging capacity before the starting point of RUL
prediction (𝑆𝑃𝑟𝑢𝑙), needs to be known [25,26]. In other words, every
ischarging process should start at the upper voltage limit (UVL) and
nd at the lower voltage limit (LVL). Unfortunately, full discharge states
uch as mobile phones or electric vehicles often do not occur in practi-
al applications. Therefore, it is a worthwhile research to predict RUL
ased on discharging fragments. Zhang et al. [27] constructed a hybrid
arallel residual convolutional neural network (CNN) with a 4.15% test
rror for RUL prediction based on the sparse data corresponding to only
0% charging capacity. On the other hand, Chen et al. [28] designed
n empirical-data hybrid driven approach to realize the RUL prediction
f LIBs based on battery charging voltage fragment, which utilized
he prior knowledge and historical dataset efficiently. Recently, Tian
t al. [29] proposed a novel CNN model to reconstruct the complete
harging or discharging curve based on the randomly chosen fragments.
ence, maximum discharging capacity of every cycle could be acquired
ia a relative low-cost model, which provided us new vision for RUL
rediction.

Due to the randomness of capacity regeneration, the measured
rajectory of LIBs could be influenced by noise signal, which could
educe the RUL prediction accuracy. Furthermore, suppose the noise
ignal is considered. In this case, the complexity of the BMS would
ncrease when dual or more complex data-driven models are employed
o forecast the over-detailed degradation changes [16]. Besides, the
oise originating from the predicted maximum discharging capacity
f every cycle before 𝑆𝑃𝑟𝑢𝑙, would weaken the forecast of the global
egradation trend. Recently, Cheng et al. [30] employed the empirical
ode decomposition (EMD) to reduce the impact of capacity regenera-

ion and other factors, and then accurately separated the low-frequency
egradation trend from high-frequency capacity noise. These results
emonstrate EMD method has a simple structure, high robustness, and
pplicability for different LIBs.

Herein, a new hybrid data-driven approach is proposed to precisely
nd economically predict the LIBs RUL. This hybrid method is named
EG and composes the CNN model, EMD method, and GRU network
ith fully connected layers (GRU-FC).

The primary innovations and contributions of this paper are elabo-
ated as follows:

(1) The CNN model is applied to gain the corresponding maximum
discharging capacity of the discharging fragments. This pro-
cess could not only guarantee the fragments’ voltage ranges do
not have to be fixed or complete, but also provide maximum
discharging capacity of every cycle before 𝑆𝑃𝑟𝑢𝑙.

(2) To gain the global capacity degradation trend before 𝑆𝑃𝑟𝑢𝑙, the
EMD method is employed to decompose the predicted outcomes
from the above CNN model. This process could decrease the dis-
traction originating from capacity regeneration, and then those
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Fig. 1. The framework of the CEG approach for the RUL prediction.
extracted residuals would be beneficial to improve the accuracy
of the subsequent RUL prediction model.

(3) The GRU-FC model is employed to predict the RUL based on
the above decomposed residual. The simplified temporal model
could efficiently grasp the global capacity degradation features
of this type of battery. Finally, the hybrid approach consisting
of CNN model, EMD method, and GRU-FC model, achieves a
more suitable RUL forecast even though the original data is
discharging fragments.

The rest of this paper is organized as follows: Section 2 introduces
the methodologies of the proposed CEG approach. Section 3 presents
the prediction performance of this approach via utilizing two case
studies, and Section 4 summarizes our results and makes conclusions.

2. Model overview

2.1. RUL prediction approach framework

As shown in Fig. 1, the whole approach framework consists of two
main stages: the model training process and the RUL predicting process.

(1) Model training process: The training dataset are composed of
the LIBs’ measured capacity degradation data under different
operational conditions, and the battery aging index, including
the voltage and discharge capacity, is extracted. Firstly, the
entire discharging curves are split randomly into fragments to
form the training dataset of the CNN model. Next, the CNN
model is trained to find the mapping relationship between the
discharging fragments and their corresponding maximum dis-
charging capacity. Then, via the EMD method, the residuals of
the raw capacity degradation curves are decomposed to form
the training dataset of the GRU-FC model. Finally, the GRU-FC
model is trained to grasp the capacity degradation features of
this type of battery.

(2) RUL predicting processing: After collecting the test battery’s
discharging fragments before 𝑆𝑃𝑟𝑢𝑙, the well-trained CNN model
is loaded, and then exports the maximum discharging capacity
of every cycle, which combines into a predicted capacity degra-
dation curve before 𝑆𝑃𝑟𝑢𝑙. Then, via the EMD method, this curve
is decomposed to the predicted global capacity degradation
trend before 𝑆𝑃𝑟𝑢𝑙 which serves as the input of the well-trained
GRU-FC model. Via constant iterations, the subsequent capacity
degradation trajectory could be predicted, and thus the RUL
value also could be inferred.
3

2.2. CNN model

The overall CNN model is designed based on previous work with
some modifications, as shown in Fig. 2 [29]. It consists of five layers:
the 1D convolutional (Conv1d), maximum pool (MaxPool1d), adaptive
maximum pooling layer (AdaptiveMaxPool1d), fully connected (FC),
and dropout layers. Firstly, this architecture starts with the stacked
convolutional layer and pooling layer, and the local features of the
discharging fragments could be extracted efficiently. Then, two FC
layers and a dropout layer are employed to normalize those features.
The last FC layer also serves as the output layer to output the predicted
entire discharging curve. In this work, 16, 8, and 8 filters for the
three Conv1d layers are used in sequence, respectively. Meanwhile,
the window size, padding size, and moving step of convolutional filters
are 3, 1, and 1, respectively. A non-linear activation function (ReLU)
is also utilized to avoid potential vanishing gradient problems. The
MaxPool1d layers could concentrate features, and the kernel size of the
first two pooling layers is 3. The last one is the AdaptiveMaxPool1d
layer, which coordinates the data size requirement and summarizes
spatial information. Then, the extracted features are sent to the first
FC layer (148 neurons), followed by the ReLU activation function. The
dropout layer (dropout rate is set at 20%) is used to deal with the
output originating from the first FC layer to prevent the over-fitting
problem. Finally, the output layer is also a FC layer, and its amount
of neurons is decided by the length of the predicted discharging curve.
The detailed structure data of CNN model are listed in Table S1.

The Adam algorithm is employed to update model parameters iter-
atively. The batch size is 500. During the CNN model training process,
30% of the training dataset is randomly selected as a validation dataset
and used to improve the model’s prediction accuracy. After training for
50 000 epochs, the CNN model with the lowest validation loss is picked
up and used for predicting the test batteries’ maximum discharging
capacity. Overfitting problem is repressed via early stopping approach
in which the patience is set to 10. Namely, the training process would
be stopped, once the valid loss does not continue to decrease in 10
iterative steps.

2.3. Data pre-processing method for CNN model

The voltage (𝑉 (𝜏)) and current (𝐼(𝜏)) are measured during the
constant current discharging. According to the Ah counting, the dis-
charging capacity (𝑄) could be calculated as follow:

𝑄 (𝑉 ) =
𝑉 (𝜏)=𝑉upper

|𝐼 (𝜏)|𝑑𝜏 (1)
∫𝑉 (𝜏)=𝑉
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Fig. 2. The architecture of the developed CNN model.
where the 𝑉𝑢𝑝𝑝𝑒𝑟 represents the UVL, and the 𝑄 (𝑉 ) represents the dis-
charging curve at the giving voltage range

[

𝑉𝑢𝑝𝑝𝑒𝑟, 𝑉𝑢𝑝𝑝𝑒𝑟 − 𝛥𝑉 ,… , 𝑉𝑢𝑝𝑝𝑒𝑟
−𝑁𝛥𝑉 ], where 𝛥𝑉 is voltage step, 𝑁 = (𝑉𝑢𝑝𝑝𝑒𝑟 − 𝑉𝑙𝑜𝑤𝑒𝑟)∕𝛥𝑉 , and 𝑉𝑙𝑜𝑤𝑒𝑟
represents the discharging ending voltage. Therefore, the discharging
curve could form a matrix with two columns and (𝑁+1) rows. Because
the full discharge does not happen very often process is not usually
fully carried out in practice, the discharging fragments are utilized in
this study. Therefore, the intercepted fragment is

[[

𝑉𝑠, 𝑉𝑠+1,⋯ , 𝑉𝑠+𝑎
]

,
[

𝑄𝑠 −𝑄𝑠−1, 𝑄𝑠+1 −𝑄𝑠−1,⋯ , 𝑄𝑠+𝛼 −𝑄𝑠−1
]]

, (1 ≤ 𝛼 ≤ 𝑁 − 1, 2 ≤ 𝑠 ≤
𝑁 − 𝛼 + 1), which is made up of the voltage and discharging capacity
sequence. Meanwhile, the corresponding predicted label should be the
entire discharging curve 𝑄(𝑉 ). According to the optimized results of the
reported literature [29], the sequence length of voltage is set to 300 mV
(𝑉𝑠 − 𝑉𝑠+𝛼 = 300 mV). Meanwhile, the starting-point capacity value of
this fragment should be set to 0 because the fragment is independent of
the original discharging curve. The ending-point capacity value of this
fragment could be computed. The intercepted fragment before being
fed into the CNN model, needs to be normalized as follows:
−
𝑄 =

𝑄 − 𝜇𝑄
𝛿𝑄

(2)

where 𝑄,
−
𝑄 are the discharging capacity data and normalized discharg-

ing capacity data, respectively. 𝛿𝑄 and 𝜇𝑄 are the training dataset’ s
standard deviation and mean value, respectively.

2.4. Empirical mode decomposition

Capacity degradation curves of LIBs are not exactly monotonically
decreasing, because of some uncontrolled chemical reaction inside
the battery. The capacity might recover at a small amount, which
could be interpreted as capacity regeneration. This noise would disrupt
the subsequent model to grasp the global capacity degradation trend
seriously, so the predicted capacity degradation curve originating from
the well-trained CNN model need to be decomposed to improve the
accuracy of subsequent RUL prediction.

EMD algorithm was proposed by Huang et al. [31] to analyze
nonlinear and non-stationary signals, which could transfer a group of
time series into locally narrow band components, namely, intrinsic
mode functions (IMFs). Compared with the other traditional method
(wavelet decomposition and the wavelet packet decomposition), EMD
is more suitable for processing nonlinear signals because the it does not
need to select the decomposing parameters manually.

Through the process of EMD, the capacity degradation data 𝑥 (𝑡) are
decomposed into terms of IMFs and residual, representing the capacity
regeneration noise of different frequencies and global capacity degra-
dation trend, respectively. Then, the decomposition function could be
represented as:

𝑥(𝑡) =
𝑑
∑

𝑗=1
𝑐𝑗 (𝑡) + 𝑟𝑑 (𝑡) (3)

where 𝑐𝑗 (𝑡) (𝑗 = 1,2, . . . , 𝑑) is the IMFs including different frequency
bands ranging from high to low, reflecting the disruption of noise sig-
nals caused by capacity regeneration, 𝑟 (𝑡) is the residual, representing
4

𝑑

the global capacity degradation trend, and 𝑑 is the number of the
modes.

The detailed decomposition of EMD is as follows:

(1) Confirm all the local extremum points (the local maxima and
minima) of the time series 𝑥 (𝑡).

(2) Fit the local maxima and minima to format the upper and lower
envelope using the cubic spline interpolation function, denote
the upper and lower envelope as 𝑥𝑢(𝑡) and 𝑥𝑙(𝑡), respectively.

(3) Compute the mean (𝑚 (𝑡)) of the upper and lower envelops as
follows:

𝑚(𝑡) = [𝑥𝑙(𝑡) + 𝑥𝑢(𝑡)]∕2 (4)

(4) Compute a new data sequence ℎ (𝑡) from 𝑥 (𝑡) by subtracting 𝑚 (𝑡),
as shown as follows:

ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) (5)

(5) Judge whether the oscillating mode condition is satisfied. If
yes, export the 𝑥 (𝑡) as the residual 𝑟𝑑 (𝑡), and stop the EMD
computation. If not, go ahead to step (6).

(6) Regard ℎ (𝑡) as one of the IMFs, namely, 𝑐𝑗 (𝑡) = ℎ (𝑡).
(7) Replace 𝑥 (𝑡) with the residual 𝑟 (𝑡) as shown as follows:

𝑟(𝑡) = 𝑥(𝑡) − 𝑐𝑗 (𝑡) (6)

and then repeat the above.

It is worth noticing that the oscillating mode condition is defined
by the equation below:
𝑀
∑

𝑡=1

[

ℎ𝑗−1(𝑡) − ℎ𝑗 (𝑡)
]2

ℎ2𝑗−1(𝑡)
≤ 𝛿, 𝑗 = 1, 2,… ,𝑀 (7)

where 𝑀 is the number of data points, representing the number of
discharge curve in this case, and 𝛿 is the termination parameter, which
is 0.05 in this study. When the iterative calculation result meets Eq. (7),
the EMD calculation will be converged.

2.5. GRU unit

GRU unit, proposed by Cho et al. [32], chose a new type of hidden
unit that has been motivated by the LSTM unit. Compared with LSTM,
GRU combines the forget gate and the input gate into a single update
gate and is also mixed with cellular state and hidden state. Hence, it
has fewer parameters and a faster training speed. The structure of a
GRU memory cell is shown in Fig. 3 below:

The output of a memory cell is controlled by the reset gate 𝑟𝑡 and
the update gate 𝑧𝑡, which are related to 𝑥𝑡 and ℎ𝑡−1. 𝑥𝑡 and ℎ𝑡−1 denote
the current input sequence and hidden state at the previous time point,
respectively. These two kinds of gates have their respective missions.
The 𝑟𝑡 controls how much information in ℎ𝑡−1 could be ignored. The
previously hidden state information is contained less when the value
is smaller. The 𝑧𝑡 is designed to control the impact of the previous
information on the current moment. The larger the value is, the more
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Fig. 3. Basic GRU structure.

previous information is brought in. The specific calculation process can
be represented based on the following equations:

Reset gate:

𝑟𝑡 = 𝜎(𝑊𝜏 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

) (8)

Update gate:

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

) (9)

Output:

ℎ̃𝑡 = tanh
(

𝑊 ⋅
[

𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡
])

(10)

ℎ𝑡 =
(

1 − 𝑧𝑡
)

∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (11)

2.6. GRU-FC model

In consideration of algorithmic complexity and accuracy compre-
hensively, a GRU-FC network structure, which is composed of 2 GRU
layers and 2 FC layers, is constructed for LIBs RUL prediction in this
study. Given the size of the open dataset about LIBs [33,34], the
number of GRU is set to 40. A ReLU activation function is also placed
between 2 FC layers and utilized to avoid potential vanishing gradient
problems. The architecture of the GRU-FC model is illustrated in Fig. 4
with capacity prediction value as follows:

𝐶(𝑘)𝑝𝑟𝑒𝑑 = 𝑊12 ⋅
[

𝑊ℎ2 ⋅ (𝑊ℎ1 ⋅ ℎ𝑡 + 𝑏1) + 𝑏2
]

+ 𝑏3 (12)

where 𝐶(𝑘)𝑝𝑟𝑒𝑑 is the predicted maximum discharging capacity at the
𝑘𝑡ℎ cycle, 𝑊 is the weight matrix, and 𝑏 is the bias matrix.

The Adam optimizer is also employed for parameter training in
backpropagation to update weights. The batch size is set to 500. During
5

the GRU-FC model training process, 70% of the training dataset was
used to train the GRU-FC model. The remaining 30% of this data
was randomly selected as a validation dataset to validate the training
process. After training for 1000 epochs, the model with the lowest
validation loss is picked up and used in the maximum discharging
capacity prediction process. In order to avoid the overfitting problem in
the training process of the GRU-FC model, the early stopping approach
is also employed, and the patience is set to 10.

2.7. Data pre-processing method for GRU-FC model

The sliding window method is used in the GRU-FC model train-
ing and predicting process, as shown in Fig. 5. The residual of his-
torical data with a length of (𝑛 + 1) serves as the input and out-
put of the GRU-FC model, in which the sequence from 𝐶𝑡−𝑛 to 𝐶𝑡−1
(
[

𝐶𝑡−𝑛, 𝐶𝑡−𝑛+1,⋯ , 𝐶𝑡−1
]

) is used as input and the last data 𝐶𝑡 is the target
data of this model. Meanwhile, the input data before being fed into the
model, also need to be normalized as follows:
−
𝐶 =

𝐶 − 𝜇𝐶
𝛿𝐶

(13)

where 𝐶,
−
𝐶 are the maximum discharging capacity data and normalized

maximum discharging capacity data, respectively. 𝛿𝐶 and 𝜇𝐶 are the
training dataset’ s standard deviation and mean value, respectively.

2.8. RUL prediction process

Algorithm 1 presents the overall process of RUL prediction, where
𝛤𝐶𝑁𝑁 and 𝛤𝐺𝑅𝑈−𝐹𝐶 represent the well-trained CNN model and GRU-
FC model, respectively. 𝐹 represents the discharging fragment. 𝑃𝐶𝑏
is the predicted capacity degradation curve before 𝑆𝑃𝑟𝑢𝑙, and 𝑅𝑒𝑠 is
the 𝑃𝐶𝑏’s residual via EMD method. 𝐼𝑁𝑃𝑈𝑇𝐺𝑅𝑈−𝐹𝐶 is the input of
𝛤𝐺𝑅𝑈−𝐹𝐶 in which sliding window is applied to intercept data. When
the end condition is met, the predicted capacity degradation curve after
𝑆𝑃𝑟𝑢𝑙 (𝑃𝐶𝑎) could be gained, and 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is easily confirmed by
comparing 𝑃𝐶𝑎 data with the failure threshold (𝐶𝑓𝑎𝑖𝑙𝑢𝑟𝑒). To decrease
the computing cost and exhibit the degradation trajectory more clearly,
only capacity data greater than 0.9 times 𝐶𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is predicted, and those
less than 𝐶𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is not concerned.

3. Results and discussion

3.1. Experimental data

The performances of the proposed CEG approach are verified using
two open battery datasets (CALCE-CX2 and CALCE-CS2) provided by
the Center for Advanced Life Cycle Engineering [35], and the spec-
ifications and corresponding parameters of test batteries are shown
in Table S2. The capacity degradation process of CALCE-CS2 is dis-
played in Fig. 6a, which are CS2-35, CS2-36, CS2-37, and CS2-38
Fig. 4. The network architecture of GRU-FC model.
Fig. 5. The input and output data are based on a sliding window.
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Algorithm 1 RUL prediction for test battery
Input: Every cycle’s discharging fragment before 𝑆𝑃𝑟𝑢𝑙
Output: 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

collect every cycle’s discharging fragment before 𝑆𝑃𝑟𝑢𝑙:
𝐹1 =

[[

𝑉𝑠1 , 𝑉𝑠1+1, ⋅ ⋅ ⋅, 𝑉𝑠1+𝛼
]

,
[

𝑄𝑠1 −𝑄𝑠1−1, 𝑄𝑠1+1 −𝑄𝑠1−1, ⋅ ⋅ ⋅, 𝑄𝑠1+𝛼 −𝑄𝑠1−1
]]

𝐹2 =
[[

𝑉𝑠2 , 𝑉𝑠2+1, ⋅ ⋅ ⋅, 𝑉𝑠2+𝛼
]

,
[

𝑄𝑠2 −𝑄𝑠2−1, 𝑄𝑠2+1 −𝑄𝑠2−1, ⋅ ⋅ ⋅, 𝑄𝑠2+𝛼 −𝑄𝑠2−1
]]

⋅ ⋅ ⋅
𝐹𝑆𝑃𝑟𝑢𝑙 =

[[

𝑉𝑠𝑆𝑃𝑟𝑢𝑙 , 𝑉𝑠𝑆𝑃𝑟𝑢𝑙+1, ⋅ ⋅ ⋅, 𝑉𝑠𝑆𝑃𝑟𝑢𝑙+𝛼
]

,
[

𝑄𝑠𝑆𝑃𝑟𝑢𝑙 −𝑄𝑠𝑆𝑃𝑟𝑢𝑙−1, 𝑄𝑠𝑆𝑃𝑟𝑢𝑙+1 −𝑄𝑠𝑆𝑃𝑟𝑢𝑙−1, ⋅ ⋅ ⋅, 𝑄𝑠𝑆𝑃𝑟𝑢𝑙+𝛼 −𝑄𝑠𝑆𝑃𝑟𝑢𝑙−1
]]

;
normalize and then extrapolation:

𝐶1 = 𝛤𝐶𝑁𝑁 (𝐹1)
𝐶2 = 𝛤𝐶𝑁𝑁 (𝐹2)
⋅ ⋅ ⋅
𝐶𝑆𝑃𝑟𝑢𝑙 = 𝛤𝐶𝑁𝑁 (𝐹𝑆𝑃𝑟𝑢𝑙 )

𝑃𝐶𝑏 =
[

𝐶1, 𝐶2,⋯𝐶𝑆𝑃𝑟𝑢𝑙

]

decompose 𝑃𝐶𝑏 via EMD method:

Re𝑠 =
[

∧
𝐶1,

∧
𝐶2, ⋅ ⋅ ⋅,

∧
𝐶𝑆𝑃𝑟𝑢𝑙

]

;

intercept Res data via sliding window:

𝐼𝑁𝑃𝑈𝑇𝐺𝑅𝑈−𝐹𝐶 =
[

∧
𝐶𝑆𝑃𝑟𝑢𝑙−𝑛+1,

∧
𝐶𝑆𝑃𝑟𝑢𝑙−𝑛+2, ⋅ ⋅ ⋅,

∧
𝐶𝑆𝑃𝑟𝑢𝑙

]

;

set initial k=1 & 𝐫𝐞𝐩𝐞𝐚𝐭;
normalize and then extrapolation:

�̂�𝑆𝑃𝑟𝑢𝑙+𝑘 = 𝛤𝐺𝑅𝑈−𝐹𝐶
(

𝐼𝑁𝑃𝑈𝑇𝐺𝑅𝑈−𝐹𝐶
)

;
update 𝐼𝑁𝑃𝑈𝑇𝐺𝑅𝑈−𝐹𝐶 :

𝐼𝑁𝑃𝑈𝑇𝐺𝑅𝑈−𝐹𝐶 =
[

∧
𝐶𝑆𝑃𝑟𝑢𝑙+𝑘−𝑛+1,

∧
𝐶𝑆𝑃𝑟𝑢𝑙+𝑘−𝑛+2, ⋅ ⋅ ⋅,

∧
𝐶𝑆𝑃𝑟𝑢𝑙+𝑘

]

;

cycle time: 𝑘+ = 1;
𝐮𝐧𝐭𝐢𝐥 the end condition �̂�𝑆𝑃𝑟𝑢𝑙+𝑘 ≤ 0.9 × 𝐶failure is met:

𝑃𝐶𝑎 =
[

∧
𝐶𝑆𝑃𝑟𝑢𝑙+1,

∧
𝐶𝑆𝑃𝑟𝑢𝑙+2, ⋅ ⋅ ⋅,

∧
𝐶𝑆𝑃𝑟𝑢𝑙+𝑘

]

;

search the last capacity point meeting �̂�𝑆𝑃𝑟𝑢𝑙+𝑘′ ≥ 𝐶failure, and 𝑘′ is 𝑅𝑈𝐿prediction .
Fig. 6. Battery capacity degradation curves: (a) CALCE-CS2; (b) CALCE-CX2.
LIBs, respectively. The battery with 1.10 Ah was tested at a standard
constant current/voltage protocol with a current rate of 0.5 C until the
voltage reached 4.2 V, and then 4.2 V was sustained until the charging
current dropped to below 0.05 A. For CALCE-CS2 dataset, their rated
capacity is considered to be 1.10 Ah, and the failure threshold of RUL
prediction is set to 0.88 Ah (80% of capacity rating). Fig. S1 displays
the constant current discharging curves for CALCE-CS2. Because some
batteries could not reach the UVL or LVL, the discretized discharging
curve is restructured via a linear interpolation method with 10 mV
intervals. The upper or lower voltage of the new discharging curve
could be fixed at 4.181 V and 2.710 V, respectively. Therefore, the
processing entire discharging curve contains 148 elements, meanwhile,
capacity variation out of this voltage range could be ignored. The
training dataset of CALCE-CS2 consists of three batteries (CS2-36, CS2-
37, and CS2-38), and the remaining battery (CS2-35) serves as the
testing dataset.
6

As shown in Fig. 6b, another dataset of CALCE-CX2 includes CX2-
34, CX2-36, CX2-37, and CX2-38, exhibiting a more apparent linear
degradation phenomenon than CALCE-CS2 due to different jellyroll
configurations. Except for the higher capacity (1.35 Ah), the charging
and discharging policies of CALCE-CX2 are similar to those of CALCE-
CS2. For CALCE-CX2 batteries, their rated capacity is considered to be
1.35 Ah, and the failure threshold of RUL prediction is set to 1.08
Ah (80% of capacity rating). Fig. S2 displays the constant current
discharging curves for CALCE-CX2. The linear interpolation method
is also utilized to restructure the new discharging curve of CALCE-
CX2. The upper or lower voltage of the new discharging curve could
be fixed at 4.040 V and 2.700 V. Therefore, the processing entire
discharging curve contains 134 elements. Meanwhile, the only first one
thousand charging/discharging cycle data would be studied because the
remaining data is far below its failure threshold. The training dataset
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Fig. 7. Curve restructured results via CNN model (a) 𝑅𝑀𝑆𝐸𝐶𝑁𝑁 of discharging-curve prediction for the CS2-35. (b) Examples of the curve estimation results at the first and last
cycles of CS2-35. (c) The error distribution between real maximum discharging capacity and the corresponding values for CS2-35 battery.
Fig. 8. Random 4 predicted all-cycle capacity degradation curves of CS2-35 battery via a well-trained CNN model, in which the predicted maximum discharging capacity of every
cycle is based on the randomly picked discharging fragment.
Fig. 9. (a) Residuals of CALCE-CS2 after EMD processing; (b) Pearson correlation coefficients between original curves with IMFs and residuals, respectively.
of CALCE-CX2 consists of three batteries (CX2-34, CX2-36, and CX2-
37), and the remaining battery (CX2-38) serves as the test dataset.
Additionally, there are a lot of noise signals caused by capacity regener-
ation in all capacity degradation curves, which would disturb the RUL
7

prediction. In this study, the CALCE-CS2 dataset is utilized to testify the
predicted performances of this proposed approach first, and the CALCE-
CX2 dataset is utilized subsequently to testify the generalization ability
of this approach.
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Fig. 10. Comparing the real capacity degradation curve of CS2-35 battery and residuals of the random 4 predicted all-cycle capacity degradation curves via the well-trained CNN
model, in which the predicted maximum discharging capacity of every cycle is based on the randomly picked discharging fragment.
Fig. 11. Validation test of the GRU-FC model with the different number of FC neurons and the sliding window length based on the residuals of CS-36, CS-37, and CS-38 data.
3.2. Evaluation criteria

To evaluate the performances of the restructuring discharging curve
and predicted maximum discharging capacity via the CNN model, the
root mean square errors (𝑅𝑀𝑆𝐸𝐶𝑁𝑁 ) and absolute error (𝐴𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
are employed, and the equations are as follows:

RMSECNN =

√

√

√

√

1
𝑛

𝑛1
∑

(

�̂�𝑖 −𝑄𝑖
)2 (14)
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1 𝑖=1
𝐴𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
|

|

|

Capacityprediction − Capacitytrue
|

|

|

(15)

where 𝑛1 is the element number of this discharging curve; 𝑄𝑖 and
�̂�𝑖 are the measured capacity and corresponding predicting value at
the 𝑖𝑡ℎ point of this discharging curve, respectively; 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑡𝑟𝑢𝑒 are the predicting maximum discharging capacity and
corresponding true value, respectively. The smaller values of these
criteria represent higher prediction accuracy for the CNN model.
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Fig. 12. RUL prediction of CEG approach for CS2-35 battery, when the fragment’s SV of every cycle is set to fixed values.
To quantitatively evaluate the RUL prediction performances of the
whole hybrid approach, absolute error (𝐴𝐸𝑟𝑢𝑙), relative error (𝑅𝐸), and
root mean square error (𝑅𝑀𝑆𝐸𝑟𝑢𝑙) are used for evaluation, and they
are shown as follows:

AERUL = |

|

|

RULprediction − RULtrue
|

|

|

(16)

RE =
|

|

|

RULprediction − RULtrue
|

|

|

RULtrue
× 100% (17)

𝑅𝑀𝑆𝐸𝑟𝑢𝑙 =

√

√

√

√

1
𝑛2

𝑛2
∑

𝑘=1

(

�̂�𝑘 − 𝐶𝑘
)2 (18)

where 𝑅𝑈𝐿prediction denotes the predicted value of RUL, and 𝑅𝑈𝐿true
indicates the real value of RUL; 𝑛2 is the number of predicted lengths
between 𝑆𝑃𝑟𝑢𝑙 and failure threshold; 𝐶𝑘 is the real maximum dis-
charging capacity value at the 𝑘𝑡ℎ cycle, and �̂�𝑘 is the corresponding
predicted capacity values from GRU-FC model. The smaller values
of the three criteria represent higher prediction accuracy for RUL
prediction.
9

3.3. Predicted maximum discharging capacity based on the discharging
fragment via CNN model

The restructured result of all discharging curves for CS2-35 are
displayed in Fig. 7a, in which abscissa represents the starting voltage
(SV ) of the discharging fragments, and the ordinate represents the
observed maximum discharging capacity corresponding to sampled
discharging curve, namely, the recording discharging capacity at 2.710
V in raw data. For all battery lifetime, the well-trained CNN model can
reconstruct the entire discharging curve with the average 𝑅𝑀𝑆𝐸𝐶𝑁𝑁
of 11.2 mAh (1.02% of the nominal capacity of 1.10 Ah). Besides,
as shown in Table 1, the 𝑅𝑀𝑆𝐸𝐶𝑁𝑁 (7.8 mAh) values of low SV
(3.01 ∼ 3.60 V) are lower than those (𝑅𝑀𝑆𝐸𝐶𝑁𝑁 : 14.6 mAh) of high
SV (3.60 ∼ 4.18 V). Namely, the restructured performances of the
discharging curve could be guaranteed well when the input sequence
starts at low voltage, which implies this voltage region processes more
effective information [29]. The restructured results of the first and
last discharging curve of CS2-35 are displayed in Fig. 7b. In this
study, it is vital for the subsequent model to provide accurate every
cycle’s maximum discharging capacity as input. Fig. 7c exhibits the
difference values between the real maximum discharging capacity and
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Fig. 12. (continued).
Table 1
Prediction errors of the CNN model for the CS2-35 battery.
SV of the
discharging fragments
/V

Average 𝑅𝑀𝑆𝐸𝐶𝑁𝑁
/mAh

Average 𝐴𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
/mAh

3.01∼4.18 11.2 17.9
3.01∼3.60 7.8 11.4
3.60∼4.18 14.6 24.4

the corresponding predicted value from the restructured discharging
curve. It can be seen that these errors are centralized mainly near 0,
implying the predicted results from the well-trained CNN model could
agree well with the real discharging capacity. Meanwhile, as shown in
Table 1, the average 𝐴𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (11.4 mAh) values of low SV (3.01 ∼
3.60 V) are lower than those (average 𝐴𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 24.4 mAh) of high SV
(3.60 ∼ 4.18 V), so the discharging fragment’s SV could try to choose
the region near the LVL to gain more precise maximum discharging
capacity.

To demonstrate the potential of the predicted outcomes from the
CNN model as the subsequent model input, Fig. 8 displays the random 4
predicted all-cycle capacity degradation curves of CS2-35 battery via a
10
well-trained CNN model, in which the predicted maximum discharging
capacity of every cycle is based on the randomly picked discharging
fragment. It can be seen that the global trends of the predicted all-cycle
capacity degradation curves are consistent with ground truth, so the
well-trained CNN model could provide reliable input for the subsequent
RUL prediction.

3.4. Decomposition results for capacity degradation curve by EMD method

During the capacity degradation process of LIBs, the capacity regen-
eration would produce an appreciable amount of noise to disrupt the
RUL prediction. Hence, in this study, the EMD method is employed to
extract the global trend of the training dataset’s capacity degradation
curves to serve as the training dataset for the GRU-FC model. Fig. 9a
displays the original capacity degradation curves of the CALCE-CS2
batteries and the corresponding decomposed residuals via the EMD
method. It can be seen that the extracted residual curve is smooth and
highly coincident with the trend of the original curve, which implies
that the EMD method could obtain the main characteristics of the
capacity degradation curve and eliminate the influences of capacity
regeneration noise. Fig. 9b displays the Pearson correlation coefficients
between original curves with IMFs and residuals, respectively. It is
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Fig. 13. RUL prediction of CEG approach for CS2-35 battery when the fragment’s SV is randomly selected from 3.60 V to 3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (231
cycles; ∼40% of the degradation data) is chosen randomly.
clear that the correlation coefficients between all the residual and their
original data are infinitely close to 1, and those of the other IMFs
are overshadowed by contrast, demonstrating that the residuals are
highly relevant to the original data. In order to exhibit how the EMD
method could avoid the disruption of capacity regeneration, the fast
Fourier transformer approach is employed to study the relationship
between frequency and amplitude. As shown in Fig. S3, a case study of
the CS2-35 battery is conducted. The amplitude of the high-frequency
IMF is lower than that of low-frequency IMF, and there is no obvious
frequency for residual, indicating that the extracted residual almost
certainly contained no noise signal caused by capacity regeneration.
Therefore, the EMD method can avoid the disruption of capacity re-
generation, and extract the trend of the capacity degradation curve,
efficiently.

Besides, as shown in Fig. 8, there is still non-negligible capacity re-
generation for the predicted capacity degradation curve from the CNN
model. Therefore, the denoising processing also could be carried out for
the predicted outcome from the CNN model for the subsequent accurate
RUL prediction. Meanwhile, the accuracy of RUL prediction might not
be improved even if all the IMFs are predicted by other arithmetic and
added to the final results [36]. This is because there is a relatively
high gap between the IMFs of the real capacity degradation curve
11
and those of the predicted capacity degradation curve from the CNN
model, and the extra calculation also would generate additional cost.
To exhibit the decomposition performances of the predicted outcomes
from the CNN model, Fig. 10 displays the decomposition results of the
predicted all-cycle capacity degradation curve of the CS2-35 battery
via the well-trained CNN model, in which the predicted maximum dis-
charging capacity of every cycle originated from the randomly picked
discharging fragment. It is clear that the decomposed residual curves
also could reflect the main trend of the real capacity degradation curve,
implying the denoising efficiency of the EMD method. Therefore, before
𝑆𝑃𝑟𝑢𝑙, the residual of the predicted capacity degradation curve from
CNN model could serve as the input for the well-trained GRU-FC model,
which decreases the disruption of capacity regeneration.

3.5. Hyperparametric optimization of the GRU-FC model on training dataset

The number of FC neurons and the sliding window length are vital
for the performance of GRU-FC model, so the grid search and three-
fold cross-validation are employed for hyperparametric optimization.
Fig. 11 shows the grid-search results of the GRU-FC model with the
variational combination of FC neurons and the sliding window length
based on the residuals of CS-36, CS-37, and CS-38 data. When the
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Fig. 14. RUL prediction of CEG approach for CS2-35 battery when the fragment’s SV is randomly selected from 3.60 V to 3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (289
cycles; ∼50% of the degradation data) is chosen randomly.
FC neuron units are between 17 and 28, and the sliding window
length is between 10 and 21, the 𝑅𝑀𝑆𝐸𝑟𝑢𝑙 error could reach the
minimum value. In order to decrease the model complexity, the number
of FC neurons and the sliding window length are set to 20 and 20,
respectively. The detailed structure data of GRU-FC model are listed
in Table S3.

3.6. Degradation trajectory and RUL prediction results of test dataset after
𝑆𝑃𝑟𝑢𝑙

According to the results of 3.3, the intercepted discharging frag-
ment’s SV play a great role in the predicted maximum discharging
capacity, so the influence of the fragment’s SV on RUL prediction would
be investigated. Firstly, before 𝑆𝑃𝑟𝑢𝑙, discharging fragment with the
same SV is intercepted in every cycle. Then, those fragments serve as
the input of a well-trained CNN model to gain the predicted maximum
discharging capacity, which combines to form the predicted capacity
degradation curve before 𝑆𝑃𝑟𝑢𝑙. After EMD decomposition, the residual
of this predicted curve from the CNN model serves as the input of the
well-trained GRU-FC model. Figs. 12a and 12b show the RUL prediction
result when the fragment’s SV of every cycle is set to fixed values.
When the fragment’s SV gets closer to 3.1 V (near LVL), the residual
12
(violet full line) decomposed from the predicted maximum discharging
capacity from the CNN model (orange points), matches well with the
global trend of real capacity degradation (red points before 𝑆𝑃𝑟𝑢𝑙).
Meanwhile, the predicted capacity degradation trajectory from the
GRU-FC model (light blue full line) matches well with the real capacity
degradation trajectory (red points after 𝑆𝑃𝑟𝑢𝑙). This result is consistent
with the above restructured results of the discharging curve, namely,
the closer the fragment’s SV gets to LVL, the higher prediction accuracy
it is. When the more accurate predicted capacity degradation data from
CNN model serves as the subsequent model input for RUL prediction,
the degradation trend of the test battery could be well acquired by
the well-trained GRU-FC model with learned characteristics from the
source domain. As shown in Table 2, the RUL prediction errors (𝑅𝐸:
1.0381%; 𝐴𝐸𝑟𝑢𝑙: 6 cycles at 3.1 V) near LVL are remarkably lower
than those errors (𝑅𝐸: 12.2837%; 𝐴𝐸𝑟𝑢𝑙: 71 cycles at 4.1 V) near UVL.
Besides, when the discharging fragment’s SV is less than 3.7 V, the
prediction errors would decrease notably, which agree well with the
results of predicting capacity degradation trajectory. Therefore, it can
also be concluded that the discharging fragments’ SV should be set to
near LVL as far as possible if in practice.

Based on the above discussion, when the fragment’s SV of every dis-
charging curve is picked up near LVL, the more accurate RUL prediction
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Fig. 15. RUL prediction of CEG approach for CS2-35 battery when the fragment’s SV is randomly selected from 3.60 V to 3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (346
cycles; ∼60% of the degradation data) is chosen randomly.
Table 2
Prediction errors of CEG approach for the CS2-35 battery, when the fragment’s SV of every cycle is set at fixed values.
𝑆𝑉 /V 𝑅𝐸/% 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛/cycles 𝐴𝐸𝑟𝑢𝑙/cycles 𝑅𝑀𝑆𝐸𝑟𝑢𝑙/Ah

4.1 12.2837 649 71 0.0414
4.0 9.3426 632 54 0.0139
3.9 9.3426 632 54 0.0311
3.8 7.2664 536 42 0.0247
3.7 6.0554 543 35 0.0209
3.6 3.2872 597 19 0.0174
3.5 2.7682 594 16 0.0156
3.4 2.9412 595 17 0.0154
3.3 0.0000 578 0 0.0117
3.2 1.3841 586 8 0.0135
3.1 1.0381 572 6 0.0116
could still be realized, so the fragment’s SV could randomly selected
within a specific range (from 3.60 V to 3.01 V for CS2-35). Figs. 13
and 14, and 15 display the RUL prediction result when the discharging
fragment’s SV is randomly selected from 3.60 V to 3.01 V, for every
discharging curve before 𝑆𝑃𝑟𝑢𝑙. Whether the 𝑆𝑃𝑟𝑢𝑙 is ∼40% (231 cycles),
∼50% (289 cycles), or ∼60% (343 cycles) of the entire degradation
data, the predicted capacity degradation trajectory from the GRU-FC
model (light blue full line) is close to the real capacity degradation
trajectory (red points after 𝑆𝑃 ), even when discharging fragments are
13

𝑟𝑢𝑙
picked up randomly within a specific voltage range. Based on the well-
trained CNN model and EMD method, the discomposed residual reflects
the global trend of the capacity degradation curve before 𝑆𝑃𝑟𝑢𝑙. Then,
the well-trained GRU-FC model could rapidly and accurately predict
test batterie’s properties, based on the previous common characteristics
of training dataset. As shown in Table 3, when the 𝑆𝑃𝑟𝑢𝑙 is 346 cycles,
the 𝑅𝑀𝑆𝐸𝑟𝑢𝑙 (the range: 0.0114 ∼ 0.0189 Ah; the mean value: 0.0136
Ah), 𝑅𝐸 (the range: 0.6920% ∼ 5.1903%, the mean value: 2.1915%)
and 𝐴𝐸 values (the range: 4 ∼ 30 cycles, the mean value: 12 cycles),
𝑟𝑢𝑙
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Table 3
Prediction errors of the CEG approach for the CS2-35 battery when the fragment’s SV is randomly selected from 3.60 V to
3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (231, 289, and 346 cycles).
𝑆𝑃𝑟𝑢𝑙 Random no. 𝑅𝐸/% 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

/cycles
𝐴𝐸𝑟𝑢𝑙
/cycles

𝑅𝑀𝑆𝐸𝑟𝑢𝑙
/Ah

231 cycles
(∼40% of the entire
degradation data)

1 1.0381 572 6 0.0189
2 3.9792 555 23 0.0240
3 3.6332 599 21 0.0315
4 4.3253 553 25 0.0236
5 15.5709 668 90 0.0639
6 3.8062 556 22 0.0244

289 cycles
(∼50% of the entire
degradation data)

1 4.1522 554 24 0.0156
2 2.9412 595 17 0.0225
3 4.8443 606 28 0.0262
4 1.7301 568 10 0.0155
5 2.0761 566 12 0.0144
6 2.5952 563 15 0.0211

346 cycles
(∼60% of the entire
degradation data)

1 0.6920 574 4 0.0114
2 1.2111 571 7 0.0115
3 4.1522 554 24 0.0161
4 5.1903 548 30 0.0181
5 0.6920 582 4 0.0119
6 1.2111 585 7 0.0128
t
a
t
i
g
(

i
r
c
t

are a little lower than the 𝑅𝑀𝑆𝐸𝑟𝑢𝑙 (the range: 0.0144 ∼ 0.0262 Ah;
the mean value: 0.0192 Ah), 𝑅𝐸 (the range: 1.7301% ∼ 4.8443%,
the mean value: 3.0565%) and 𝐴𝐸𝑟𝑢𝑙 (the range: 10 ∼ 28 cycles, the
mean value: 18 cycles) when 𝑆𝑃𝑟𝑢𝑙 is 289 cycles, and much lower the
𝑀𝑆𝐸𝑟𝑢𝑙 (the range: 0.0189 ∼ 0.0639 Ah; the mean value: 0.0311 Ah),
𝐸 (the range: 1.0381% ∼ 15.5709%, the mean value: 5.3922%) and
𝐸𝑟𝑢𝑙 (the range: 6 ∼ 90 cycles, the mean value: 31 cycles) when 𝑆𝑃𝑟𝑢𝑙

s 231 cycle. This result could be ascribed to the increased accumulating
rrors along with rolling prediction. Therefore, it is vital for enhancing
ccuracy of RUL prediction to gain latest data timely, in practice.

.7. Prediction performance of the CEG approach on CALCE-CX2 dataset

To investigate the general applicability of the CEG approach, the
ALCE-CX2 dataset is also studied. Firstly, the CNN model is retrained
ecause of the different discharging voltage ranges between CALCE-
S2 and CALCE-CX2. As shown in Fig. S4a and Table S4, the average
𝑀𝑆𝐸𝐶𝑁𝑁 value of the restructured discharging curve is about 36.8
Ah (2.73% of the nominal capacity of 1.35 Ah for CX2-38), and the
𝑀𝑆𝐸𝐶𝑁𝑁 (25.4 mAh) and 𝐴𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (13.9 mAh) values of low SV

3.01 ∼ 3.50 V) are still lower than those (𝑅𝑀𝑆𝐸𝐶𝑁𝑁 : 48.2 mAh;
𝐸𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 29.3 mAh) of high SV (3.50 ∼ 4.00 V), which is same
s the above result of the CS2-35 battery. The restructured results of
he first and last discharging curve of CX2-38 are displayed in Fig.
4b. Meanwhile, Fig. S4c shows the error distribution between the
redicted maximum discharging capacity and ground truth, which is
lso centralized mainly near 0, implying that the maximum discharging
apacity could also be predicted accurately via the well-trained CNN
odel based on the CX2-38 battery’s discharging fragments. Fig. S5
isplays the difference between predicted values from the CNN model
nd ground truth. The global trends of the random 4 predicted all-
ycle capacity degradation curves, agree well with the real degradation
urve, implying the universality of the CNN model. Fig. S6 displays
he decomposition results of the random 4 predicted all-cycle capacity
egradation curves from the well-trained CNN model, in which the
redicted maximum discharging capacity of every cycle originated from
he randomly picked discharging fragment. The decomposed residual
rom the predicted all-cycles discharging capacity curve could also
eflect the global trend of the real degradation curve. Therefore, for
he CX2-38 battery, before 𝑆𝑃𝑟𝑢𝑙, the residual decomposed from the
redicted capacity degradation curve could serve as the input for the
ell-trained GRU-FC model.

The capacity degradation of adjacent cycles between the CALCE-
X2 dataset and the CALCE-CS2 dataset are very similar, so the hyper-
arameters of the GRU-FC model remain unchanged. After extracting
14
he residual of the CALCE-CX2 training dataset, the GRU-FC model is
lso constructed and then trained. Meanwhile, based on the result of
he restructured discharging curve about CX2-38, the fragment’s SV
s randomly selected within a specific range (3.50 V ∼ 3.01 V), to
uarantee the subsequent RUL prediction. Fig. 16 (𝑆𝑃𝑟𝑢𝑙 = 258 cycles
∼40% of the degradation data)), Fig. 17 (𝑆𝑃𝑟𝑢𝑙 = 323 cycles (∼50%

of the degradation data)), and Fig. 18 (𝑆𝑃𝑟𝑢𝑙 = 387 cycles (∼60% of
the degradation data)) exhibit the RUL prediction result when the dis-
charging fragment’s SV of every cycle before 𝑆𝑃𝑟𝑢𝑙 is randomly selected
from 3.50 V to 3.01 V. The predicted degradation trajectory after 𝑆𝑃𝑟𝑢𝑙
s consistent with the real curve, further indicating the feasibility and
obustness of the CEG approach. Although the capacity degradation
urves of the CALCE-CX2 dataset exhibit more linear changes than
hose of the CALCE-CS2 dataset, the RUL prediction accuracy (𝑅𝐸 ≤

7.0%) of the CALCE-CX2 dataset is higher than those (𝑅𝐸 ≤ 5.4%)
of CALCE-CS2 dataset, which could be assigned to the relatively low
prediction accuracy of the maximum discharging capacity from the
CNN model for the CX2-38 battery.

3.8. Comparison with other methods

Table 4 summarizes the comparison between the results obtained
with the proposed method for the CALCE-CS2 dataset and the RUL pre-
diction results available in the literature. It can be seen that the input
data used in almost all other technologies cover the entire degradation
data before 𝑆𝑃𝑟𝑢𝑙 instead of the partial discharge data used in this work.
The indicator 𝑅𝐸 is comparable among different methods even if they
use different dataset. Despite the difference in the training amount of
degradation data, the proposed approach can still achieve the results
with tolerable prediction error compared with other methods which use
almost the same 𝑆𝑃𝑟𝑢𝑙. Especially, the proposed approach is the only
one that can make the prediction just requiring discharging fragments
of ∼20% capacity ratio range as input compared with the listed meth-
ods, which remarkably reduces the dependence on the data collection.
Meanwhile, the input fragment’s SV does not need to be fixed in the
discharging process.

4. Conclusion

This work proposes a hybrid data-driven approach consisting of the
CNN model, EMD method, and GRU-FC model, which realizes excellent
LIBs RUL prediction with discharging fragments. The main innovations
of this article are: (i) for the RUL prediction, the raw data is composed
of the discharging fragments, which could reduce time cost and make
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Fig. 16. RUL prediction of CEG approach for CX2-38 battery when the fragment’s SV is randomly selected from 3.50 V to 3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (258
cycles; ∼40% of the degradation data) is chosen randomly.
Table 4
Comparison with other methods of RUL prediction results.

Methods 𝑅𝐸
/%

𝑅𝑀𝑆𝐸𝑟𝑢𝑙
/Ah

Requirements for input data

≤5.3922 ≤0.0311 Discharging fragment of ∼20%
capacity ratio range from ∼40%
of the degradation data

Proposed method ≤3.0565 ≤0.0192 Discharging fragment of ∼20%
capacity ratio range from ∼50%
of the degradation data

≤2.1915 ≤0.0136 Discharging fragment of ∼20%
capacity ratio range from ∼60%
of the degradation data

TL-LSTM-PFa [37] 3.0 0.0110 ∼50% of the entire degradation data
DNN+IRes2Net-BiGRU-FCb [38] 8.7 0.0193 ∼43% of the entire degradation data
SDDLc [34] 0.86 0.0171 ∼50% of the entire degradation data
AR-RPFd [39] 14.06 -f ∼36% of the entire degradation data
EMD-ARIMAe [40] 16.0 0.0209 ∼36% of the entire degradation data

a TL-LSTM-PF: the fusion method of LSTM based on transfer learning and particle filter model.
b DNN+Res2Net-Bidirectional Gated Recurrent Unit-Fully Connected.
c a sequence decomposition and deep learning.
d autoregressive model with autoregressive moving average.
e autoregressive integrated moving average model combining with EMD.
f the symbol ‘‘–’’ denotes ‘‘unavailable’’.
15
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Fig. 17. RUL prediction of CEG approach for CX2-38 battery when the fragment’s SV is randomly selected from 3.50 V to 3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (323
cycles; ∼50% of the degradation data) is chosen randomly.
it more suitable for the actual application; (ii) the well-trained CNN
model could accurately predict the every cycle’s maximum discharging
capacity, and then the global degradation trend before 𝑆𝑃𝑟𝑢𝑙 could
be decomposed via EMD method. Finally, based on the decomposed
residual, the well-trained GRU-FC model could estimate the capacity
degradation trajectory after 𝑆𝑃𝑟𝑢𝑙 because it already grasps this type
battery’s unique degradation characteristics; (iii) the proposed hybrid
approach is tested on two open battery datasets, which exhibit less than
7.0% based on the discharging fragment of the ∼20% capacity ratio
range from 40% to 60% of the degradation data. Compared with other
studies, the approach in this work performs significantly in terms of
estimation accuracy and data requirements.

In the future, we will further explore the utilization of the approach
in scenarios involving multiple charging/discharging protocols for bat-
teries. Meanwhile, how to employ the pre-trained approach from one
dataset to estimate the other dataset with different working condition
is another major concern of our future research.
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Fig. 18. RUL prediction of CEG approach for CX2-38 battery when the fragment’s SV is randomly selected from 3.50 V to 3.01 V, for every discharging curve before 𝑆𝑃𝑟𝑢𝑙 (387
cycles; ∼60% of the degradation data) is chosen randomly.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.apenergy.2023.122555.
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